ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of a new stabilizing effect for polar water ice on Mars

98   0   0.0 ( 0 )
 نشر من قبل Adrian Brown
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), we map the temporal variability of water ice absorption bands over the near-polar ice mound in Louth crater, Mars. The absorption band depth of water ice at 1.5 microns can be used as a proxy for ice grain size and so sudden reductions can time any switches from ablation to condensation. A short period of deposition on the outer edge of the ice mound during late spring coincides with the disappearance of seasonal water frost from the surrounding regolith suggesting that this deposition is locally sourced. The outer unit at Louth ice mound differs from its central regions by being rough, finely layered, and lacking wind-blown sastrugi. This suggests we are observing a new stabilizing effect wherein the outer unit is being seasonally replenished with water ice from the surrounding regolith during spring. We observe the transport distance for water migration at Louth crater to be ~4km, and we use this new finding to address why no water ice mounds are observed in craters <9km in diameter.



قيم البحث

اقرأ أيضاً

This study constrains the lower bound of the scattering phase function of Martian water ice clouds (WICs) through the implementation of a new observation aboard the Mars Science Laboratory (MSL). The Phase Function Sky Survey (PFSS) was a multiple po inting all-sky observation taken with the navigation cameras (Navcam) aboard MSL. The PFSS was executed 35 times during the Aphelion Cloud Belt (ACB) season of Mars Year 34 over a solar longitude range of L_s=61.4{deg}-156.5{deg}. Twenty observations occurred in the morning hours between 06:00 and 09:30 LTST, and 15 runs occurred in the evening hours between 14:30 and 18:00 LTST, with an operationally required 2.5 hour gap on either side of local noon due the sun being located near zenith. The resultant WIC phase function was derived over an observed scattering angle range of 18.3{deg} to 152.61{deg}, normalized, and compared with 9 modeled phase functions: seven ice crystal habits and two Martian WIC phase functions currently being implemented in models. Through statistical chi-squared probability tests, the five most probable ice crystal geometries observed in the ACB WICs were aggregates, hexagonal solid columns, hollow columns, plates, and bullet rosettes with p-values greater than or equal to 0.60, 0.57,0.56,0.56, and 0.55, respectively. Droxtals and spheres had p-values of 0.35, and 0.2, making them less probable components of Martian WICs, but still statistically possible ones. Having a better understanding of the ice crystal habit and phase function of Martian water ice clouds directly benefits Martian climate models which currently assume spherical and cylindrical particles.
116 - Paul D. Feldman 2011
The European Space Agencys Rosetta spacecraft, en route to a 2014 encounter with comet 67P/Churyumov-Gerasimenko, made a gravity assist swing-by of Mars on 25 February 2007, closest approach being at 01:54UT. The Alice instrument on board Rosetta, a lightweight far-ultraviolet imaging spectrograph optimized for in situ cometary spectroscopy in the 750-2000 A spectral band, was used to study the daytime Mars upper atmosphere including emissions from exospheric hydrogen and oxygen. Offset pointing, obtained five hours before closest approach, enabled us to detect and map the HI Lyman-alpha and Lyman-beta emissions from exospheric hydrogen out beyond 30,000 km from the planets center. These data are fit with a Chamberlain exospheric model from which we derive the hydrogen density at the 200 km exobase and the H escape flux. The results are comparable to those found from the the Ultraviolet Spectrometer experiment on the Mariner 6 and 7 fly-bys of Mars in 1969. Atomic oxygen emission at 1304 A is detected at altitudes of 400 to 1000 km above the limb during limb scans shortly after closest approach. However, the derived oxygen scale height is not consistent with recent models of oxygen escape based on the production of suprathermal oxygen atoms by the dissociative recombination of O2+.
Ice-rich planets formed exterior to the iceline and thus are expected to contain substantial amount of ice (volatiles). The high ice content leads to unique conditions in the interior, under which the structure of a planet may be affected by ice inte raction with other metals. We use experimental data of ice-rock interaction at high pressure, and calculate detailed thermal evolution for possible interior configurations of ice-rich planets. We model the effect of migration inward on the ice-rich interior by including the influences of stellar flux and envelope mass loss. We find that rock and ice are expected to remain mixed, due to miscibility at high pressure, in most of the planet interior (>99% in mass) for a wide range of planetary masses. We also find that the deep interior of planetary twins that have migrated to different distances from the star are usually similar, if no mass loss occurs. Significant mass loss results in an interior structure of a mixed ice and rock ball, surrounded by a volatile atmosphere of less than 1% of the planets mass. In this case, the mass of the atmosphere of water / steam is limited by the ice-rock interaction. We conclude that when ice is abundant in planetary interiors the ice and rock tend to stay mixed for giga-years, and the interior structure differs from the simple layered structure that is usually assumed. This finding could have significant consequences on planets observed properties, and it should be considered in exoplanets characterisation.
Ozone is an important radiative trace gas in the Earths atmosphere. The presence of ozone can significantly influence the thermal structure of an atmosphere, and by this e.g. cloud formation. Photochemical studies suggest that ozone can form in carbo n dioxide-rich atmospheres. We investigate the effect of ozone on the temperature structure of simulated early Martian atmospheres. With a 1D radiative-convective model, we calculate temperature-pressure profiles for a 1 bar carbon dioxide atmosphere. Ozone profiles are fixed, parameterized profiles. We vary the location of the ozone layer maximum and the concentration at this maximum. The maximum is placed at different pressure levels in the upper and middle atmosphere (1-10 mbar). Results suggest that the impact of ozone on surface temperatures is relatively small. However, the planetary albedo significantly decreases at large ozone concentrations. Throughout the middle and upper atmospheres, temperatures increase upon introducing ozone due to strong UV absorption. This heating of the middle atmosphere strongly reduces the zone of carbon dioxide condensation, hence the potential formation of carbon dioxide clouds. For high ozone concentrations, the formation of carbon dioxide clouds is inhibited in the entire atmosphere. In addition, due to the heating of the middle atmosphere, the cold trap is located at increasingly higher pressures when increasing ozone. This leads to wetter stratospheres hence might increase water loss rates on early Mars. However, increased stratospheric H2O would lead to more HOx, which could efficiently destroy ozone. This result emphasizes the need for consistent climate-chemistry calculations to assess the feedback between temperature structure, water content and ozone chemistry. Furthermore, convection is inhibited at high ozone amounts, leading to a stably stratified atmosphere.
The gas-driven dust activity of comets is still an unresolved question in cometary science. In the past, it was believed that comets are dirty snowballs and that the dust is ejected when the ice retreats. However, thanks to the various space missions to comets, it has become evident that comets have a much higher dust-to-ice ratio than previously thought and that most of the dust mass is ejected in large particles. Here we report on new comet-simulation experiments dedicated to the study of the ejection of dust aggregates caused by the sublimation of solid water ice. We find that dust ejection exactly occurs when the pressure of the water vapor above the ice surface exceeds the tensile strength plus the gravitational load of the covering dust layer. Furthermore, we observed the ejection of clusters of dust aggregates, whose sizes increase with increasing thickness of the ice-covering dust-aggregate layer. In addition, the trajectories of the ejected aggregates suggest that most of the aggregates obtained a non-vanishing initial velocity from the ejection event.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا