ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of O3 on the atmospheric temperature structure of early Mars

115   0   0.0 ( 0 )
 نشر من قبل Philip von Paris
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ozone is an important radiative trace gas in the Earths atmosphere. The presence of ozone can significantly influence the thermal structure of an atmosphere, and by this e.g. cloud formation. Photochemical studies suggest that ozone can form in carbon dioxide-rich atmospheres. We investigate the effect of ozone on the temperature structure of simulated early Martian atmospheres. With a 1D radiative-convective model, we calculate temperature-pressure profiles for a 1 bar carbon dioxide atmosphere. Ozone profiles are fixed, parameterized profiles. We vary the location of the ozone layer maximum and the concentration at this maximum. The maximum is placed at different pressure levels in the upper and middle atmosphere (1-10 mbar). Results suggest that the impact of ozone on surface temperatures is relatively small. However, the planetary albedo significantly decreases at large ozone concentrations. Throughout the middle and upper atmospheres, temperatures increase upon introducing ozone due to strong UV absorption. This heating of the middle atmosphere strongly reduces the zone of carbon dioxide condensation, hence the potential formation of carbon dioxide clouds. For high ozone concentrations, the formation of carbon dioxide clouds is inhibited in the entire atmosphere. In addition, due to the heating of the middle atmosphere, the cold trap is located at increasingly higher pressures when increasing ozone. This leads to wetter stratospheres hence might increase water loss rates on early Mars. However, increased stratospheric H2O would lead to more HOx, which could efficiently destroy ozone. This result emphasizes the need for consistent climate-chemistry calculations to assess the feedback between temperature structure, water content and ozone chemistry. Furthermore, convection is inhibited at high ozone amounts, leading to a stably stratified atmosphere.



قيم البحث

اقرأ أيضاً

Explaining the evidence for surface liquid water on early Mars has been a challenge for climate modelers, as the sun was ~30% less luminous during the late-Noachian. We propose that the additional greenhouse forcing of CO2-H2 collision-induced absorp tion is capable of bringing the surface temperature above freezing and can put early Mars into a limit-cycling regime. Limit cycles occur when insolation is low and CO2 outgassing rates are unable to balance with the rapid drawdown of CO2 during warm weathering periods. Planets in this regime will alternate between global glaciation and transient warm climate phases. This mechanism is capable of explaining the geomorphological evidence for transient warm periods in the martian record. Previous work has shown that collision-induced absorption of CO2-H2 was capable of deglaciating early Mars, but only with high H2 outgassing rates (greater than ~600 Tmol/yr) and at high surface pressures (between 3 to 4 bars). We used new theoretically derived collision-induced absorption coefficients for CO2-H2 to reevaluate the climate limit cycling hypothesis for early Mars. Using the new and stronger absorption coefficients in our 1-dimensional radiative convective model as well as our energy balance model, we find that limit cycling can occur with an H2 outgassing rate as low as ~300 Tmol/yr at surface pressures below 3 bars. Our results agree more closely with paleoparameters for early martian surface pressure and hydrogen abundance.
We perform a suite of smoothed particle hydrodynamics simulations to investigate in detail the results of a giant impact on the young Uranus. We study the internal structure, rotation rate, and atmospheric retention of the post-impact planet, as well as the composition of material ejected into orbit. Most of the material from the impactors rocky core falls in to the core of the target. However, for higher angular momentum impacts, significant amounts become embedded anisotropically as lumps in the ice layer. Furthermore, most of the impactors ice and energy is deposited in a hot, high-entropy shell at a radius of ~3 Earth radii. This could explain Uranus observed lack of heat flow from the interior and be relevant for understanding its asymmetric magnetic field. We verify the results from the single previous study of lower resolution simulations that an impactor with a mass of at least 2 Earth masses can produce sufficiently rapid rotation in the post-impact Uranus for a range of angular momenta. At least 90% of the atmosphere remains bound to the final planet after the collision, but over half can be ejected beyond the Roche radius by a 2 or 3 Earth mass impactor. This atmospheric erosion peaks for intermediate impactor angular momenta (~3*10^36 kg m^2 s^-1). Rock is more efficiently placed into orbit and made available for satellite formation by 2 Earth mass impactors than 3 Earth mass ones, because it requires tidal disruption that is suppressed by the more massive impactors.
We investigate the influence of impacts of large planetesimals and small planetary embryos on the early Martian surface on the hydrodynamic escape of an early steam atmosphere that is exposed to the high soft X-ray and EUV flux of the young Sun. Impa ct statistics in terms of number, masses, velocities, and angles of asteroid impacts onto the early Mars are determined via n-body integrations. Based on these statistics, smoothed particle hydrodynamics (SPH) simulations result in estimates of energy transfer into the planetary surface material and according surface heating. For the estimation of the atmospheric escape rates we applied a soft X-ray and EUV absorption model and a 1-D upper atmosphere hydrodynamic model to a magma ocean-related catastrophically outgassed steam atmosphere with surface pressure values of 52 bar H2O and 11 bar CO2. The estimated impact rates and energy deposition onto an early Martian surface can account for substantial heating. The energy influx and conversion rate into internal energy is most likely sufficient to keep a shallow magma ocean liquid for an extended period of time. Higher surface temperatures keep the outgassed steam atmosphere longer in vapor form and therefore enhance its escape to space within about 0.6 Myr after its formation.
Dust aerosol plays a fundamental role in the behavior and evolution of the Martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for character ization of the atmosphere at the sites and as ground truth for orbital observations. Atmospheric extinction optical depths have been derived from solar images after calibration and correction for time-varying dust that has accumulated on the camera windows. The record includes local, regional, and globally extensive dust storms. Comparison with contemporaneous thermal infrared data suggests significant variation in the size of the dust aerosols, with a 1 {mu}m effective radius during northern summer and a 2 {mu}m effective radius at the onset of a dust lifting event. The solar longitude (LS) 20-136{deg} period is also characterized by the presence of cirriform clouds at the Opportunity site, especially near LS=50 and 115{deg}. In addition to water ice clouds, a water ice haze may also be present, and carbon dioxide clouds may be present early in the season. Variations in dust opacity are important to the energy balance of each site, and work with seasonal variations in insolation to control dust devil frequency at the Spirit site.
Context. Observationally constraining the atmospheric temperature-pressure (TP) profile of exoplanets is an important step forward for improving planetary atmosphere models, further enabling one to place the detection of spectral features and the mea surement of atomic and molecular abundances through transmission and emission spectroscopy on solid ground. Aims. The aim is to constrain the TP profile of the ultra-hot Jupiter KELT-9b by fitting synthetic spectra to the observed H$alpha$ and H$beta$ lines and identify why self-consistent planetary TP models are unable to fit the observations. Methods. We construct 126 one-dimensional TP profiles varying the lower and upper atmospheric temperatures, as well as the location and gradient of the temperature rise. For each TP profile, we compute transmission spectra of the H$alpha$ and H$beta$ lines employing the Cloudy radiative transfer code, which self-consistently accounts for non-local thermodynamic equilibrium (NLTE) effects. Results. The TP profiles leading to best fit the observations are characterised by an upper atmospheric temperature of 10000-11000 K and by an inverted temperature profile at pressures higher than 10$^{-4}$ bar. We find that the assumption of local thermodynamic equilibrium (LTE) leads to overestimate the level population of excited hydrogen by several orders of magnitude, and hence to significantly overestimate the strength of the Balmer lines. The chemical composition of the best fitting models indicate that the high upper atmospheric temperature is most likely driven by metal photoionisation and that FeII and FeIII have comparable abundances at pressures lower than 10$^{-6}$ bar, possibly making the latter detectable. Conclusions. Modelling the atmospheres of ultra-hot Jupiters requires one to account for metal photoionisation. [abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا