ترغب بنشر مسار تعليمي؟ اضغط هنا

Rosetta-Alice Observations of Exospheric Hydrogen and Oxygen on Mars

117   0   0.0 ( 0 )
 نشر من قبل Paul D. Feldman
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paul D. Feldman




اسأل ChatGPT حول البحث

The European Space Agencys Rosetta spacecraft, en route to a 2014 encounter with comet 67P/Churyumov-Gerasimenko, made a gravity assist swing-by of Mars on 25 February 2007, closest approach being at 01:54UT. The Alice instrument on board Rosetta, a lightweight far-ultraviolet imaging spectrograph optimized for in situ cometary spectroscopy in the 750-2000 A spectral band, was used to study the daytime Mars upper atmosphere including emissions from exospheric hydrogen and oxygen. Offset pointing, obtained five hours before closest approach, enabled us to detect and map the HI Lyman-alpha and Lyman-beta emissions from exospheric hydrogen out beyond 30,000 km from the planets center. These data are fit with a Chamberlain exospheric model from which we derive the hydrogen density at the 200 km exobase and the H escape flux. The results are comparable to those found from the the Ultraviolet Spectrometer experiment on the Mariner 6 and 7 fly-bys of Mars in 1969. Atomic oxygen emission at 1304 A is detected at altitudes of 400 to 1000 km above the limb during limb scans shortly after closest approach. However, the derived oxygen scale height is not consistent with recent models of oxygen escape based on the production of suprathermal oxygen atoms by the dissociative recombination of O2+.



قيم البحث

اقرأ أيضاً

The Alice ultraviolet spectrograph on the European Space Agency Rosetta spacecraft observed comet 67P/Churyumov-Gerasimenko in its orbit around the Sun for just over two years. Alice observations taken in 2015 October, two months after perihelion, sh ow large increases in the comets Ly-$beta$, O I 1304, O I 1356, and C I 1657 $AA$ atomic emission that initially appeared to indicate gaseous outbursts. However, the Rosetta Plasma Consortium instruments showed a coronal mass ejection (CME) impact at the comet coincident with the emission increases, suggesting that the CME impact may have been the cause of the increased emission. The presence of the semi-forbidden O I 1356 $AA$ emission multiplet is indicative of a substantial increase in dissociative electron impact emission from the coma, suggesting a change in the electron population during the CME impact. The increase in dissociative electron impact could be a result of the interaction between the CME and the coma of 67P or an outburst coincident with the arrival of the CME. The observed dissociative electron impact emission during this period is used to characterize the O2 content of the coma at two peaks during the CME arrival. The mechanism that could cause the relationship between the CME and UV emission brightness is not well constrained, but we present several hypotheses to explain the correlation.
This paper explores the uniqueness of ESA Rosetta mission operations from the Alice instrument point of view, documents lessons learned, and suggests operations ideas for future missions. The Alice instrument mounted on the Rosetta orbiter is an imag ing spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy with the scientific objectives of measuring properties of the escaping gas and dust, and studying the surface properties, including searching for exposed ices. We describe the operations processes during the comet encounter period, the many interfaces to contend with, the constraints that impacted Alice, and how the Alice science goals of measuring the cometary gas characteristics and their evolution were achieved. We provide details that are relevant to the use and interpretation of Alice data and published results. All these flight experiences and lessons learned will be useful for future cometary missions that include ultraviolet spectrographs in particular, and multi-instrument international payloads in general.
138 - Paul D. Feldman 2015
Aims. The Alice far-ultraviolet spectrograph onboard Rosetta is designed to observe emissions from various atomic and molecular species from within the coma of comet 67P/ Churyumov-Gerasimenko and to determine their spatial distribution and evolution with time and heliocentric distance. Methods. Following orbit insertion in August 2014, Alice made observations of the inner coma above the limbs of the nucleus of the comet from cometocentric distances varying between 10 and 80 km. Depending on the position and orientation of the slit relative to the nucleus, emissions of atomic hydrogen and oxygen were initially detected. These emissions are spatially localized close to the nucleus and spatially variable with a strong enhancement above the comets neck at northern latitudes. Weaker emission from atomic carbon and CO were subsequently detected. Results. Analysis of the relative line intensities suggests photoelectron impact dissociation of H2O vapor as the source of the observed H I and O I emissions. The electrons are produced by photoionization of H2O. The observed C I emissions are also attributed to electron impact dissociation, of CO2, and their relative brightness to H I reflects the variation of CO2 to H2O column abundance in the coma.
We describe the design, performance and scientific objectives of the NASA-funded ALICE instrument aboard the ESA Rosetta asteroid flyby/comet rendezvous mission. ALICE is a lightweight, low-power, and low-cost imaging spectrograph optimized for comet ary far-ultraviolet (FUV) spectroscopy. It will be the first UV spectrograph to study a comet at close range. It is designed to obtain spatially-resolved spectra of Rosetta mission targets in the 700-2050 A spectral band with a spectral resolution between 8 A and 12 A for extended sources that fill its ~0.05 deg x 6.0 deg field-of-view. ALICE employs an off-axis telescope feeding a 0.15-m normal incidence Rowland circle spectrograph with a concave holographic reflection grating. The imaging microchannel plate detector utilizes dual solar-blind opaque photocathodes (KBr and CsI) and employs a 2 D delay-line readout array. The instrument is controlled by an internal microprocessor. During the prime Rosetta mission, ALICE will characterize comet 67P/Churyumov-Gerasimenkos coma, its nucleus, and the nucleus/coma coupling; during cruise to the comet, ALICE will make observations of the missions two asteroid flyby targets and of Mars, its moons, and of Earths moon. ALICE has already successfully completed the in-flight commissioning phase and is operating normally in flight. It has been characterized in flight with stellar flux calibrations, observations of the Moon during the first Earth fly-by, and observations of comet Linear T7 in 2004 and comet 9P/Tempel 1 during the 2005 Deep Impact comet-collision observing campaign
103 - Paul D. Feldman 2016
Alice is a far-ultraviolet imaging spectrograph onboard Rosetta that, amongst multiple objectives, is designed to observe emissions from various atomic and molecular species from within the coma of comet 67P/Churyumov-Gerasimenko. The initial observa tions, made following orbit insertion in August 2014, showed emissions of atomic hydrogen and oxygen spatially localized close to the nucleus and attributed to photoelectron impact dissociation of H2O vapor. Weaker emissions from atomic carbon were subsequently detected and also attributed to electron impact dissociation, of CO2, the relative H I and C I line intensities reflecting the variation of CO2 to H2O column abundance along the line-of-sight through the coma. Beginning in mid-April 2015, Alice sporadically observed a number of outbursts above the sunward limb characterized by sudden increases in the atomic emissions, particularly the semi-forbidden O I 1356 multiplet, over a period of 10-30 minutes, without a corresponding enhancement in long wavelength solar reflected light characteristic of dust production. A large increase in the brightness ratio O I 1356/O I 1304 suggests O2 as the principal source of the additional gas. These outbursts do not correlate with any of the visible images of outbursts taken with either OSIRIS or the navigation camera. Beginning in June 2015 the nature of the Alice spectrum changed considerably with CO Fourth Positive band emission observed continuously, varying with pointing but otherwise fairly constant in time. However, CO does not appear to be a major driver of any of the observed outbursts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا