ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparing the birth rate of stellar black holes in binary black hole mergers and long GRBs

68   0   0.0 ( 0 )
 نشر من قبل Jean-Luc Atteia
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational wave interferometers have proved the existence of a new class of binary black holes (BBHs) weighting tens of solar masses and they have provided the first reliable measurement of the rate of coalescing black holes (BHs) in the local universe. On another side, long gamma-ray bursts (GRBs) detected with gamma-ray satellites are believed to be associated with the birth of stellar mass BHs, providing a measure of the rate of these events across the history of the universe, thanks to the measure of their cosmological redshift. These two types of sources, which are subject to different detection biases and involve BHs born in different environments with potentially different characteristics, provide complementary information on the birth rate of stellar BHs. We compare here the birth rates of BHs found in BBH mergers and in long GRBs. We construct a simple model which makes reasonable assumptions on the history of GRB formation, and which takes into account some major uncertainties, like the beaming angle of GRBs or the delay between the formation of BBHs and their coalescence. We use this model to evaluate the ratio of the number of stellar mass BHs formed in BBH mergers to those formed in GRBs. We find that in our reference model the birth rate of stellar BHs in BBH mergers represents from few percent to 100% of the rate of long GRBs and that comparable birth rates are favored by models with moderate beaming angles. We briefly discuss this result in view of our understanding of the progenitors of GRBs and BBH mergers, and we emphasize that this ratio, which will be better constrained in the coming years, can be directly compared with the prediction of stellar evolution models if a single model is used to produce GRBs and of BBH mergers with the same assumptions.

قيم البحث

اقرأ أيضاً

The Advanced LIGO and Advanced Virgo gravitational wave detectors have detected a population of binary black hole mergers in their first two observing runs. For each of these events we have been able to associate a potential sky location region repre sented as a probability distribution on the sky. Thus, at this point we may begin to ask the question of whether this distribution agrees with the isotropic model of the Universe, or if there is any evidence of anisotropy. We perform Bayesian model selection between an isotropic and a simple anisotropic model, taking into account the anisotropic selection function caused by the underlying antenna patterns and sensitivity of the interferometers over the sidereal day. We find an inconclusive Bayes factor of $1.3:1$, suggesting that the data from the first two observing runs is insufficient to pick a preferred model. However, the first detections were mostly poorly localised in the sky (before the Advanced Virgo joined the network), spanning large portions of the sky and hampering detection of potential anisotropy. It will be appropriate to repeat this analysis with events from the recent third LIGO observational run and a more sophisticated cosmological model.
In this paper we study the evolution of a primordial black hole binary (BHB) in a sample of over 1500 direct-summation $N-$body simulations of small-and intermediate-size isolated star clusters as proxies of galactic open clusters. The BHBs have mass es in the range of the first LIGO/Virgo detections. Some of our models show a significant hardening of the BHB in a relatively short time. Some of them merge within the cluster, while ejected binaries, typically, have exceedingly long merger timescales. The perturbation of stars around BHB systems is key to induce their coalescence. The BHBs which merge in the cluster could be detected with a delay of a few years between space detectors, as future LISA, and ground-based ones, due to their relatively high eccentricity. Under our assumptions, we estimate a BHB merger rate of $R_{rm mrg} sim 2$ yr$^{-1}$ Gpc$^{-3}$. We see that in many cases the BHB triggers tidal disruption events which, however, are not linked to the GW emission. Open cluster-like systems are, hence, a promising environment for GWs from BHBs and tidal disruptions.
203 - Michela Mapelli 2021
We review the main physical processes that lead to the formation of stellar binary black holes (BBHs) and to their merger. BBHs can form from the isolated evolution of massive binary stars. The physics of core-collapse supernovae and the process of c ommon envelope are two of the main sources of uncertainty about this formation channel. Alternatively, two black holes can form a binary by dynamical encounters in a dense star cluster. The dynamical formation channel leaves several imprints on the mass, spin and orbital properties of BBHs.
362 - Ya-Ping Li 2021
We perform a series of high-resolution 2D hydrodynamical simulations of equal-mass binary black holes (BBHs) embedded in active galactic nucleus (AGN) accretion disks to study whether these binaries can be driven to merger by the surrounding gas. We find that the gravitational softening adopted for the BBH has a profound impact on this result. When the softening is less than ten percent of the binary separation, we show that, in agreement with recent simulations of isolated equal-mass binaries, prograde BBHs expand in time rather than contract. Eventually, however, the binary separation becomes large enough that the tidal force of the central AGN disrupts them. Only when the softening is relatively large do we find that prograde BBHs harden. We determine through detailed analysis of the binary torque, that this dichotomy is due to a loss of spiral structure in the circum-single disks orbiting each BH when the softening is a significant fraction of the binary separation. Properly resolving these spirals -- both with high resolution and small softening -- results in a significant source of binary angular momentum. Only for retrograde BBHs do we find consistent hardening, regardless of softening, as these BBHs lack the important spiral structure in their circum-single disks. This suggests that the gas-driven inspiral of retrograde binaries can produce a population of compact BBHs in the gravitational-wave-emitting regime in AGN disks, which may contribute a large fraction to the observed BBH mergers.
Stellar triples with massive stellar components are common, and can lead to sequential binary black-hole mergers. Here, we outline the evolution towards these sequential mergers, and explore these events in the context of gravitational-wave astronomy and the pair-instability mass gap. We find that binary black-hole mergers in the pair-instability mass gap can be of triple origin and therefore are not exclusively formed in dense dynamical environments. We discuss the sequential merger scenario in the context of the most massive gravitational-wave sources detected to date: GW170729 and GW190521. We propose that the progenitor of GW170729 is a low-metallicity field triple. We support the premise that GW190521 could not have been formed in the field. We conclude that triple stellar evolution is fundamental in the understanding of gravitational-wave sources, and likely, other energetic transientsas well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا