ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar Black Hole Binary Mergers in Open Clusters

146   0   0.0 ( 0 )
 نشر من قبل Sara Rastello
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study the evolution of a primordial black hole binary (BHB) in a sample of over 1500 direct-summation $N-$body simulations of small-and intermediate-size isolated star clusters as proxies of galactic open clusters. The BHBs have masses in the range of the first LIGO/Virgo detections. Some of our models show a significant hardening of the BHB in a relatively short time. Some of them merge within the cluster, while ejected binaries, typically, have exceedingly long merger timescales. The perturbation of stars around BHB systems is key to induce their coalescence. The BHBs which merge in the cluster could be detected with a delay of a few years between space detectors, as future LISA, and ground-based ones, due to their relatively high eccentricity. Under our assumptions, we estimate a BHB merger rate of $R_{rm mrg} sim 2$ yr$^{-1}$ Gpc$^{-3}$. We see that in many cases the BHB triggers tidal disruption events which, however, are not linked to the GW emission. Open cluster-like systems are, hence, a promising environment for GWs from BHBs and tidal disruptions.

قيم البحث

اقرأ أيضاً

The Advanced LIGO and Advanced Virgo gravitational wave detectors have detected a population of binary black hole mergers in their first two observing runs. For each of these events we have been able to associate a potential sky location region repre sented as a probability distribution on the sky. Thus, at this point we may begin to ask the question of whether this distribution agrees with the isotropic model of the Universe, or if there is any evidence of anisotropy. We perform Bayesian model selection between an isotropic and a simple anisotropic model, taking into account the anisotropic selection function caused by the underlying antenna patterns and sensitivity of the interferometers over the sidereal day. We find an inconclusive Bayes factor of $1.3:1$, suggesting that the data from the first two observing runs is insufficient to pick a preferred model. However, the first detections were mostly poorly localised in the sky (before the Advanced Virgo joined the network), spanning large portions of the sky and hampering detection of potential anisotropy. It will be appropriate to repeat this analysis with events from the recent third LIGO observational run and a more sophisticated cosmological model.
We present the first systematic study of strong binary-single and binary-binary black hole interactions with the inclusion of general relativity. When including general relativistic effects in strong encounters, dissipation of orbital energy from gra vitational waves (GWs) can lead to captures and subsequent inspirals with appreciable eccentricities when entering the sensitive frequency ranges of the LIGO and Virgo GW detectors. In this study, we perform binary-binary and binary-single scattering experiments with general relativistic dynamics up through the 2.5 post-Newtonian order included, both in a controlled setting to gauge the importance of non-dissipative post-Newtonian terms and derive scaling relations for the cross-section of GW captures, as well as experiments tuned to the strong interactions from state-of-the art globular cluster models to assess the relative importance of the binary-binary channel at facilitating GW captures and the resultant eccentricity distributions of inspiral from channel. Although binary-binary interactions are 10-100 times less frequent in globular clusters than binary-single interactions, their longer lifetime and more complex dynamics leads to a higher probability for GW captures to occur during the encounter. We find that binary-binary interactions contribute 25-45% of the eccentric mergers which occur during strong black hole encounters in globular clusters, regardless of the properties of the cluster environment. The inclusion of higher multiplicity encounters in dense star clusters therefore have major implications on the predicted rates of highly eccentric binaries potentially detectable by the LIGO/Virgo network. As gravitational waveforms of eccentric inspirals are distinct from those generated by merging binaries which have circularized, measurements of eccentricity in such systems would highly constrain their formation scenario.
Hierarchical triples are expected to be produced by the frequent binary-mediated interactions in the cores of globular clusters. In some of these triples, the tertiary companion can drive the inner binary to merger following large eccentricity oscill ations, as a result of the eccentric Kozai-Lidov mechanism. In this paper, we study the dynamics and merger rates of black hole (BH) hierarchical triples, formed via binary--binary encounters in the CMC Cluster Catalog, a suite of cluster simulations with present-day properties representative of the Milky Ways globular clusters. We compare the properties of the mergers from triples to the other merger channels in dense star clusters, and show that triple systems do not produce significant differences in terms of mass and effective spin distribution. However, they represent an important pathway for forming eccentric mergers, which could be detected by LIGO--Virgo/KAGRA (LVK), and future missions such as LISA and DECIGO. We derive a conservative lower limit for the merger rate from this channel of $0.35$ Gpc$^{-3}$yr$^{-1}$ in the local Universe and up to $sim9%$ of these events may have a detectable eccentricity at LVK design sensitivity. Additionally, we find that triple systems could play an important role in retaining second-generation BHs, which can later merge again in the core of the host cluster.
Several astrophysical scenarios have been proposed to explain the origin of the population of binary black hole (BBH) mergers detected in gravitational waves (GWs) by the LIGO/Virgo Collaboration. Among them, BBH mergers assembled dynamically in youn g massive and open clusters have been shown to produce merger rate densities consistent with LIGO/Virgo estimated rates. We use the results of a suite of direct, high-precision $N$-body evolutionary models of young massive and open clusters and build the population of BBH mergers, by accounting for both a cosmologically-motivated model for the formation of young massive and open clusters and the detection probability of LIGO/Virgo. We show that our models produce dynamically-paired BBH mergers that are well consistent with the observed masses, mass ratios, effective spin parameters, and final spins of the second Gravitational Wave Transient Catalog (GWTC-2).
When galaxies collide, dynamical friction drives their central supermassive black holes close enought to each other such that gravitational radiation becomes the leading dissipative effect. Gravitational radiation takes away energy, momentum and angu lar momentum from the compact binary, such that the black holes finally merge. In the process, the spin of the dominant black hole is reoriented. On observational level, the spins are directly related to the jets, which can be seen at radio frequencies. Images of the X-shaped radio galaxies together with evidence on the age of the jets illustrate that the jets are reoriented, a phenomenon known as spin-flip. Based on the galaxy luminosity statistics we argue here that the typical galaxy encounters involve mass ratios between 1:3 to 1:30 for the central black holes. Based on the spin-orbit precession and gravitational radiation we also argue that for this typical mass ratio in the inspiral phase of the merger the initially dominant orbital angular momentum will become smaller than the spin, which will be reoriented. We prove here that the spin-flip phenomenon typically occurs already in the inspiral phase, and as such is describable by post-Newtonian techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا