ترغب بنشر مسار تعليمي؟ اضغط هنا

Are stellar--mass binary black hole mergers isotropically distributed?

328   0   0.0 ( 0 )
 نشر من قبل Richard Stiskalek
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Advanced LIGO and Advanced Virgo gravitational wave detectors have detected a population of binary black hole mergers in their first two observing runs. For each of these events we have been able to associate a potential sky location region represented as a probability distribution on the sky. Thus, at this point we may begin to ask the question of whether this distribution agrees with the isotropic model of the Universe, or if there is any evidence of anisotropy. We perform Bayesian model selection between an isotropic and a simple anisotropic model, taking into account the anisotropic selection function caused by the underlying antenna patterns and sensitivity of the interferometers over the sidereal day. We find an inconclusive Bayes factor of $1.3:1$, suggesting that the data from the first two observing runs is insufficient to pick a preferred model. However, the first detections were mostly poorly localised in the sky (before the Advanced Virgo joined the network), spanning large portions of the sky and hampering detection of potential anisotropy. It will be appropriate to repeat this analysis with events from the recent third LIGO observational run and a more sophisticated cosmological model.

قيم البحث

اقرأ أيضاً

106 - Shu-Xu Yi , K.S. Cheng 2019
Multi-messenger astronomy combining Gravitational Wave (GW) and Electromagnetic Wave (EM) observation brings huge impact on physics, astrophysics and cosmology. However, the majority of sources to be detected with currently running ground-based GW ob servatories are binary black hole (BBH) mergers, which are expected disappointedly to have no EM counterparts. In this letter, we propose that if the BBH merger happens in a gaseous disk around a supermassive black hole, the merger can be accompanied by a transient radio flare alike a fast radio burst (FRB). We argue that the total mass and the effective spin derived from GW detection can be used to distinguish such a source from other channels of BBH mergers. If the prediction is confirmed with future observation, multi-messenger astronomy can be brought to a distance which is one order of magnitude farther than present. The mystery of the origin of FRBs can also be revealed partially.
In this paper we study the evolution of a primordial black hole binary (BHB) in a sample of over 1500 direct-summation $N-$body simulations of small-and intermediate-size isolated star clusters as proxies of galactic open clusters. The BHBs have mass es in the range of the first LIGO/Virgo detections. Some of our models show a significant hardening of the BHB in a relatively short time. Some of them merge within the cluster, while ejected binaries, typically, have exceedingly long merger timescales. The perturbation of stars around BHB systems is key to induce their coalescence. The BHBs which merge in the cluster could be detected with a delay of a few years between space detectors, as future LISA, and ground-based ones, due to their relatively high eccentricity. Under our assumptions, we estimate a BHB merger rate of $R_{rm mrg} sim 2$ yr$^{-1}$ Gpc$^{-3}$. We see that in many cases the BHB triggers tidal disruption events which, however, are not linked to the GW emission. Open cluster-like systems are, hence, a promising environment for GWs from BHBs and tidal disruptions.
87 - Yubo Su , Bin Liu , Dong Lai 2021
Many proposed scenarios for black hole (BH) mergers involve a tertiary companion that induces von Zeipel-Lidov-Kozai (ZLK) eccentricity cycles in the inner binary. An attractive feature of such mechanisms is the enhanced merger probability when the o ctupole-order effects, also known as the eccentric Kozai mechanism, are important. This can be the case when the tertiary is of comparable mass to the binary components. Since the octupole strength [$propto (1-q)/(1+q)$] increases with decreasing binary mass ratio $q$, such ZLK-induced mergers favor binaries with smaller mass ratios. We use a combination of numerical and analytical approaches to fully characterize the octupole-enhanced binary BH mergers and provide analytical criteria for efficiently calculating the strength of this enhancement. We show that for hierarchical triples with semi-major axis ratio $a/a_{rm out}gtrsim 0.01$-$0.02$, the binary merger fraction can increase by a large factor (up to $sim 20$) as $q$ decreases from unity to $0.2$. The resulting mass ratio distribution for merging binary BHs produced in this scenario is in tension with the observed distribution obtained by the LIGO/VIRGO collaboration, although significant uncertainties remain about the initial distribution of binary BH masses and mass ratios.
We study the evolution of the binary black hole (BBH) mass distribution across cosmic time. The second gravitational-wave transient catalog (GWTC-2) from LIGO/Virgo contains BBH events out to redshifts $z sim 1$, with component masses in the range $s im5$--$80,M_odot$. In this catalog, the biggest black holes, with $m_1 gtrsim 45,M_odot$, are only found at the highest redshifts, $z gtrsim 0.4$. We ask whether the absence of high-mass BBH observations at low redshift indicates that the astrophysical BBH mass distribution evolves: the biggest BBHs only merge at high redshift, and cease merging at low redshift. Alternatively, this feature might be explained by gravitational-wave selection effects. Modeling the BBH primary mass spectrum as a power law with a sharp maximum mass cutoff (Truncated model), we find that the cutoff increases with redshift ($> 99.9%$ credibility). An abrupt cutoff in the mass spectrum is expected from (pulsational) pair instability supernova simulations; however, GWTC-2 is only consistent with a Truncated mass model if the location of the cutoff increases from $45^{+13}_{-5},M_odot$ at $z < 0.4$ to $80^{+16}_{-13},M_odot$ at $z > 0.4$. Alternatively, if the primary mass spectrum has a break in the power law (Broken power law) at ${38^{+15}_{-8},M_odot}$, rather than a sharp cutoff, the data are consistent with a non-evolving mass distribution. In this case, the overall rate of mergers, at all masses, increases with increasing redshift. Future observations will confidently distinguish between a sharp maximum mass cutoff that evolves with redshift and a non-evolving mass distribution with a gradual taper, such as a Broken power law. After $sim 100$ BBH merger observations, a continued absence of high-mass, low-redshift events would provide a clear signature that the mass distribution evolves with redshift.
Using the Binary Population and Spectral Synthesis code BPASS, we have calculated the rates, timescales and mass distributions for binary black hole mergers as a function of metallicity. We consider these in the context of the recently reported 1st L IGO event detection. We find that the event has a very low probability of arising from a stellar population with initial metallicity mass fraction above Z=0.010 (Z>0.5Zsun). Binary black hole merger events with the reported masses are most likely in populations below 0.008 (Z<0.4Zsun). Events of this kind can occur at all stellar population ages from ~3 Myr up to the age of the universe, but constitute only 0.1 to 0.4 per cent of binary BH mergers between metallicities of Z=0.001 to 0.008. However at metallicity Z=0.0001, 26 per cent of binary BH mergers would be expected to have the reported masses. At this metallicity the progenitor merger times can be close to ~10Gyr and rotationally-mixed stars evolving through quasi-homogeneous evolution, due to mass transfer in a binary, dominate the rate. The masses inferred for the black holes in the binary progenitor of GW,150914 are amongst the most massive expected at anything but the lowest metallicities in our models. We discuss the implications of our analysis for the electromagnetic follow-up of future LIGO event detections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا