ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-term observations of pulsars in the globular clusters 47 Tucanae and M15

86   0   0.0 ( 0 )
 نشر من قبل Alessandro Ridolfi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-decade observing campaigns of the globular clusters 47 Tucanae and M15 have led to an outstanding number of discoveries. Here, we report on the latest results of the long-term observations of the pulsars in these two clusters. For most of the pulsars in 47 Tucanae we have measured, among other things, their higher-order spin period derivatives, which have in turn provided stringent constraints on the physical parameters of the cluster, such as its distance and gravitational potential. For M15, we have studied the relativistic spin precession effect in PSR B2127+11C. We have used full-Stokes observations to model the precession effect, and to constrain the system geometry. We find that the visible beam of the pulsar is swiftly moving away from our line of sight and may very soon become undetectable. On the other hand, we expect to see the opposite emission beam sometime between 2041 and 2053.

قيم البحث

اقرأ أيضاً

This paper is the second in a series where we report the results of the long-term timing of the millisecond pulsars (MSPs) in 47 Tucanae with the Parkes 64-m radio telescope. We obtain improved timing parameters that provide additional information fo r studies of the cluster dynamics: a) the pulsar proper motions yield an estimate of the proper motion of the cluster as a whole ($mu_{alpha}, = , 5.00, pm , 0.14, rm mas , yr^{-1}$, $mu_{delta}, = , -2.84, pm , 0.12, rm mas , yr^{-1}$) and the motion of the pulsars relative to each other. b) We measure the second spin-period derivatives caused by the change of the pulsar line-of-sight accelerations; 47 Tuc H, U and possibly J are being affected by nearby objects. c) For ten binary systems we now measure changes in the orbital period caused by their acceleration in the gravitational field of the cluster. From all these measurements, we derive a cluster distance no smaller than $sim,$4.69 kpc and show that the characteristics of these MSPs are very similar to their counterparts in the Galactic disk. We find no evidence in favour of an intermediate mass black hole at the centre of the cluster. Finally, we describe the orbital behaviour of the four black widow systems. Two of them, 47 Tuc J and O, exhibit orbital variability similar to that observed in other such systems, while for 47 Tuc I and R the orbits seem to be remarkably stable. It appears, therefore, that not all black widows have unpredictable orbital behaviour.
103 - A. Ridolfi , P. Freire , P. Torne 2016
For the past couple of decades, the Parkes radio telescope has been regularly observing the millisecond pulsars in 47 Tucanae (47 Tuc). This long-term timing program was designed to address a wide range of scientific issues related to these pulsars a nd the globular cluster where they are located. In this paper, the first of a series, we address one of these objectives: the characterization of four previously known binary pulsars for which no precise orbital parameters were known, namely 47 Tuc P, V, W and X (pulsars 47 Tuc R and Y are discussed elsewhere). We determined the previously unknown orbital parameters of 47 Tuc V and X and greatly improved those of 47 Tuc P and W. For pulsars W and X we obtained, for the first time, full coherent timing solutions across the whole data span, which allowed a much more detailed characterization of these systems. 47 Tuc W, a well-known tight eclipsing binary pulsar, exhibits a large orbital period variability, as expected for a system of its class. 47 Tuc X turns out to be in a wide, extremely circular, 10.9-day long binary orbit and its position is ~3.8 arcmin away from the cluster center, more than three times the distance of any other pulsar in 47 Tuc. These characteristics make 47 Tuc X a very different object with respect to the other pulsars of the cluster.
We report the first wideband observations of pulsars C, D and J in the globular cluster 47Tucanae (NGC 104) using the Ultra-Wideband Low (UWL) receiver system recently installed on the Parkes 64 m radio telescope. The wide frequency range of the UWL receiver (704-4032 MHz), along with the well-calibrated system, allowed us to obtain flux density measurements and polarization pulse profiles. The mean pulse profiles have significant linear and circular polarization, allowing for determination of the Faraday rotation measure for each pulsar. Precise measurements of the dispersion measures show a significant deviation in the value for pulsar D compared to earlier results. Searches for new pulsars in the cluster are on-going and we have determined optimal bands for such searches using the Parkes UWL receiver system.
We present the results of the analysis of five observations of the globular clutser 47 Tucanae (47 Tuc) with eROSITA (extended Roentgen Survey with an Imaging Telescope Array) on board Spektrum-Roentgen-Gamma (Spektr-RG, SRG). The aim of the work is the study of the X-ray population in the field of one of the most massive globular clusters in our Milky Way. We focused on the classification of point-like sources in the field of 47 Tuc. The unresolved dense core of 47~Tuc (1.7 radius) and also the sources, which show extended emission are excluded in this study. We applied different methods of X-ray spectral and timing analysis together with multi wavelength studies for the classification of the X-rays sources in the field of 47 Tuc. We detected 888 point-like sources in the energy range of 0.2-5.0 keV. We identified 92 background AGNs and 26 foreground stars. One of the foreground stars is classified as a variable M~dwarf. We also classified 23 X-ray sources as members of 47 Tuc, including 13 symbiotic stars, 3 quiescent low mass X-ray binaries, one millisecond pulsar candidate, and one cataclysmic variable. There are also 4 X-ray sources, which can be either a cataclysmic variable or a contact binary. Moreover, we calculated the X-ray luminosity function of 47 Tuc X-ray sources within a radius of 18.8. It shows that the main population of X-ray sources in 47 Tuc has a luminosity <10$^{32}$erg s$^{-1}$ in the energy range of 0.5-2.0 keV. These sources can mainly be candidates for quiescent low mass X-ray binaries and different types of accreting white dwarfs, especially symbiotic stars.
We report the discovery of the likely white dwarf companions to radio millisecond pulsars 47 Tuc Q and 47 Tuc S in the globular cluster 47 Tucanae. These blue stars were found in near-ultraviolet images from the Hubble Space Telescope for which we de rived accurate absolute astrometry, and are located at positions consistent with the radio coordinates to within 0.016 arcsec (0.2sigma). We present near-ultraviolet and optical colours for the previously identified companion to millisecond pulsar 47 Tuc U, and we unambiguously confirm the tentative prior identifications of the optical counterparts to 47 Tuc T and 47 Tuc Y. For the latter, we present its radio-timing solution for the first time. We find that all five near-ultraviolet counterparts have U300-B390 colours that are consistent with He white dwarf cooling models for masses ~0.16-0.3 Msun and cooling ages within ~0.1-6 Gyr. The Ha-R625 colours of 47 Tuc U and 47 Tuc T indicate the presence of a strong Ha absorption line, as expected for white dwarfs with an H envelope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا