ﻻ يوجد ملخص باللغة العربية
We report the first wideband observations of pulsars C, D and J in the globular cluster 47Tucanae (NGC 104) using the Ultra-Wideband Low (UWL) receiver system recently installed on the Parkes 64 m radio telescope. The wide frequency range of the UWL receiver (704-4032 MHz), along with the well-calibrated system, allowed us to obtain flux density measurements and polarization pulse profiles. The mean pulse profiles have significant linear and circular polarization, allowing for determination of the Faraday rotation measure for each pulsar. Precise measurements of the dispersion measures show a significant deviation in the value for pulsar D compared to earlier results. Searches for new pulsars in the cluster are on-going and we have determined optimal bands for such searches using the Parkes UWL receiver system.
Multi-decade observing campaigns of the globular clusters 47 Tucanae and M15 have led to an outstanding number of discoveries. Here, we report on the latest results of the long-term observations of the pulsars in these two clusters. For most of the p
This paper is the second in a series where we report the results of the long-term timing of the millisecond pulsars (MSPs) in 47 Tucanae with the Parkes 64-m radio telescope. We obtain improved timing parameters that provide additional information fo
For the past couple of decades, the Parkes radio telescope has been regularly observing the millisecond pulsars in 47 Tucanae (47 Tuc). This long-term timing program was designed to address a wide range of scientific issues related to these pulsars a
In the last 10 years 20 millisecond pulsars have been discovered in the globular cluster 47 Tucanae. Hitherto, only 3 of these had published timing solutions. Here we improve upon these 3 and present 12 new solutions. These measurements can be used t
Despite considerations of mass loss from stellar evolution suggesting otherwise, the content of gas in globular clusters seems poor and hence its measurement very elusive. One way of constraining the presence of ionized gas in a globular cluster is t