ترغب بنشر مسار تعليمي؟ اضغط هنا

EROSITA study of the 47~Tucanae globular cluste

135   0   0.0 ( 0 )
 نشر من قبل Sara Saeedi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of the analysis of five observations of the globular clutser 47 Tucanae (47 Tuc) with eROSITA (extended Roentgen Survey with an Imaging Telescope Array) on board Spektrum-Roentgen-Gamma (Spektr-RG, SRG). The aim of the work is the study of the X-ray population in the field of one of the most massive globular clusters in our Milky Way. We focused on the classification of point-like sources in the field of 47 Tuc. The unresolved dense core of 47~Tuc (1.7 radius) and also the sources, which show extended emission are excluded in this study. We applied different methods of X-ray spectral and timing analysis together with multi wavelength studies for the classification of the X-rays sources in the field of 47 Tuc. We detected 888 point-like sources in the energy range of 0.2-5.0 keV. We identified 92 background AGNs and 26 foreground stars. One of the foreground stars is classified as a variable M~dwarf. We also classified 23 X-ray sources as members of 47 Tuc, including 13 symbiotic stars, 3 quiescent low mass X-ray binaries, one millisecond pulsar candidate, and one cataclysmic variable. There are also 4 X-ray sources, which can be either a cataclysmic variable or a contact binary. Moreover, we calculated the X-ray luminosity function of 47 Tuc X-ray sources within a radius of 18.8. It shows that the main population of X-ray sources in 47 Tuc has a luminosity <10$^{32}$erg s$^{-1}$ in the energy range of 0.5-2.0 keV. These sources can mainly be candidates for quiescent low mass X-ray binaries and different types of accreting white dwarfs, especially symbiotic stars.



قيم البحث

اقرأ أيضاً

We have used the Ultraviolet Imaging Telescope to obtain deep far-UV (1620 Angstrom), 40 diameter images of the prototypical metal-rich globular cluster 47 Tucanae. We find a population of about 20 hot (Teff > 9000 K) objects near or above the predic ted UV luminosity of the hot horizontal branch (HB) and lying within two half-light radii of the cluster center. We believe these are normal hot HB or post-HB objects rather than interacting binaries or blue stragglers. IUE spectra of two are consistent with post-HB phases. These observations, and recent HST photometry of two other metal-rich clusters, demonstrate that populations with rich, cool HBs can nonetheless produce hot HB and post-HB stars. The cluster center also contains an unusual diffuse far-UV source which is more extended than its V-band light. It is possible that this is associated with an intracluster medium, for which there was earlier infrared and X-ray evidence, and is produced by C IV emission or scattered light from grains.
Multi-decade observing campaigns of the globular clusters 47 Tucanae and M15 have led to an outstanding number of discoveries. Here, we report on the latest results of the long-term observations of the pulsars in these two clusters. For most of the p ulsars in 47 Tucanae we have measured, among other things, their higher-order spin period derivatives, which have in turn provided stringent constraints on the physical parameters of the cluster, such as its distance and gravitational potential. For M15, we have studied the relativistic spin precession effect in PSR B2127+11C. We have used full-Stokes observations to model the precession effect, and to constrain the system geometry. We find that the visible beam of the pulsar is swiftly moving away from our line of sight and may very soon become undetectable. On the other hand, we expect to see the opposite emission beam sometime between 2041 and 2053.
We investigate near-ultraviolet (NUV) variability in the Galactic globular cluster (GC) 47 Tucanae (47 Tuc). This work was undertaken within the GC sub-project of the Transient UV Objects project, a programme which aims to find and study transient an d strongly variable UV sources. Globular clusters are ideal targets for transient searches because of their high stellar densities and large populations of variable systems. Using all archival observations of 47 Tuc obtained with the UV/optical telescope (UVOT) aboard the Neil Gehrels Swift observatory with the uvm2 filter, we searched for UV variability using a specialised pipeline which utilises difference image analysis. We found four clear transients, hereafter SW1-4, with positions consistent with those of known cataclysmic variables (CVs) or CV candidates identified previously using Hubble Space Telescope observations. All four sources exhibit significant outbursts. Based on the inferred outburst properties and the association with known CVs, we tentatively identify the UV transients as CV-dwarf novae (DNe). Two DNe have been previously observed in 47 Tuc: V2, which has a position consistent with that of SW4; and AKO 9, which was not in outburst during any of the UVOT observations. We thus increase the known number of DNe in 47 Tuc to 5 and the total number of detected DNe in all Galactic GCs combined from 14 to 17. We discuss our results in the context of the apparent scarcity of DNe in GCs. We suggest that the likely cause is observational biases, such as limited sensitivity due to the high background from unresolved stars in the GC and limited angular resolution of the telescopes used. We additionally detected one strongly variable source in 47 Tuc, which could be identified as the known RR Lyrae star HV 810. We found its period to have significantly increased with respect to that measured from data taken in 1988.
177 - E. M. H. Wu 2014
In re-analyzing the archival Chandra data of the globular cluster 47 Tucanae, we have detected a new diffuse X-ray emission feature within the half-mass radius of the cluster. The spectrum of the diffuse emission can be described by a power-law model plus a plasma component with photon index $Gammasim1.0$ and plasma temperature $kTsim0.2$ keV. While the thermal component is apparently uniform, the non-thermal contribution falls off exponentially from the core. The observed properties could possibly be explained in the context of multiple shocks resulted from the collisions among the stellar wind in the cluster and the inverse Compton scattering between the pulsar wind and the relic photons.
Using archival {it Chandra} observations with a total exposure of 510 ks, we present an updated catalog of point sources for Globular Cluster 47 Tucanae. Our study covers an area of $sim 176.7$ arcmin$^{2}$ (i.e., with $Rlesssim7.5arcmin$) with 537 X -ray sources. We show that the surface density distribution of X-ray sources in 47 Tuc is highly peaked in cluster center, rapidly decreases at intermediate radii, and finally rises again at larger radii, with two distribution dips at $Rsim 100arcsec$ and $Rsim 170arcsec$ for the faint ($L_{X}lesssim 5.0times 10^{30} {rm erg,s^{-1}}$) and bright ($L_{X}gtrsim 5.0times 10^{30} {rm erg,s^{-1}}$) groups of X-ray sources, separately. These distribution features are similar to those of Blue Straggler Stars (BSS), where the distribution dip is located at $Rsim 200arcsec$ citep{ferraro2004}. By fitting the radial distribution of each group of sources with a generalized King model, we estimated an average mass of $1.51pm0.17 M_{odot}$, $1.44pm0.15 M_{odot}$ and $1.16pm0.06 M_{odot}$ for the BSS, bright and faint X-ray sources, respectively. These results are consistent with the mass segregation effect of heavy objects in GCs, where more massive objects drop to the cluster center faster and their distribution dip propagates outward further. Besides, the peculiar distribution profiles of X-ray sources and BSS are also consistent with the mass segregation model of binaries in GCs, which suggests that in addition to the dynamical formation channel, primordial binaries are also a significant contributor to the X-ray source population in GCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا