ﻻ يوجد ملخص باللغة العربية
We develop the realistic minimal electronic model for recently discovered BiS$_2$ superconductors including the spin-orbit coupling based on a first-principles band structure calculations. Due to strong spin-orbit coupling, characteristic for the Bi-based systems, the tight-binding low-energy model necessarily includes $p_x$, $p_y$, and $p_z$ orbitals. We analyze a potential Cooper-pairing instability from purely repulsive interaction for the moderate electronic correlations using the so-called leading angular harmonics approximation (LAHA). For small and intermediate doping concentrations we find the dominant instabilities to be $d_{x^2-y^2}$-wave, and $s_{pm}$-wave symmetries, respectively. At the same time, in the absence of the sizable spin fluctuations the intra and interband Coulomb repulsion are of the same strength, which yields the strongly anisotropic behaviour of the superconducting gaps on the Fermi surface in agreement with recent ARPES findings. In addition, we find that the Fermi surface topology for BiS$_2$ layered systems at large electron doping can resembles the doped iron-based pnictide superconductors with electron and hole Fermi surfaces with sufficient nesting between them. This could provide further boost to increase $T_c$ in these systems.
We study the spin resonance peak in recently discovered iron-based superconductors. The resonance peak observed in inelastic neutron scattering experiments agrees well with predicted results for the extended $s$-wave ($s_pm$) gap symmetry. Recent neu
The effects of spin independent hybridization potential and spin orbit coupling on two band superconductor with equal time s-wave inter band pairing order parameter is investigated theoretically. To study symmetry classes in two band superconductors
Superconductivity was first observed more than a century ago, but the search for new superconducting materials remains a challenge. The Cooper pairs in superconductors are ideal embodiments of quantum entanglement. Thus, novel superconductors can be
Based on an effective two-band model and using the fluctuation-exchange (FLEX) approach, we explore spin fluctuations and unconventional superconducting pairing in Fe-based layer superconductors. It is elaborated that one type of interband antiferrom
Recent angle-resolved spectroscopy in BiS$_2$-based superconductors has indicated that the superconducting gap amplitude possesses remarkable anisotropy and/or a sign change on a small Fermi pocket around $X$ point. It implies a possibility of an unc