ﻻ يوجد ملخص باللغة العربية
Superconductivity was first observed more than a century ago, but the search for new superconducting materials remains a challenge. The Cooper pairs in superconductors are ideal embodiments of quantum entanglement. Thus, novel superconductors can be critical for both learning about electronic systems in condensed matter and for possible application in future quantum technologies. Here two previously unreported materials, NbIr$_2$B$_2$ and TaIr$_2$B$_2$, are presented with superconducting transitions at 7.2 and 5.2 K, respectively. They display a unique noncentrosymmetric crystal structure, and for both compounds the magnetic field that destroys the superconductivity at 0 K exceeds one of the fundamental characteristics of conventional superconductors (the Pauli limit), suggesting that the superconductivity may be unconventional. Supporting this experimentally based deduction, first-principle calculations show a spin split Fermi surface due to the presence of strong spin-orbit coupling. These materials may thus provide an excellent platform for the study of non-BCS superconductivity in intermetallic compounds.
We review the properties of Ni-based superconductors which contain Ni2X2 (X=As, P, Bi, Si, Ge, B) planes, a common structural element found also in the recently discovered FeAs superconductors. Strong evidence for the fully gapped nature of the super
Recent discovery of superconductivity in CeRh$_2$As$_2$ clarified an unusual $H$-$T$ phase diagram with two superconducting phases [Khim et al. arXiv:2101.09522]. The experimental observation has been interpreted based on the even-odd parity transiti
Coupling between $sigma$-bonding electrons and phonons is generally very strong. To metallize $sigma$-electrons provides a promising route to hunt for new high-T$_c$ superconductors. Based on this picture and first-principles density functional calcu
We investigated the superconducting state of the noncentrosymmetric superconductors Li$_2$Pd$_x$Pt$_{3-x}$B with superconducting transition temperature $T_c$= 5.16(8) K ($x$=2.25), 3.56(8) K ($x=1.5$) and 2.60 K ($x=0$) by means of muon-spin rotation
The local structures of 122-type paradium arsenides, namely BaPd$_2$As$_2$ and SrPd$_2$As$_2$, are examined by As K-edge extended x-ray absorption fine structure measurements to find a possible correlation between the variation of their superconducti