ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Fluctuations, Interband Coupling, and Unconventional Pairing in Iron-based Superconductors

138   0   0.0 ( 0 )
 نشر من قبل Zijian Yao
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on an effective two-band model and using the fluctuation-exchange (FLEX) approach, we explore spin fluctuations and unconventional superconducting pairing in Fe-based layer superconductors. It is elaborated that one type of interband antiferromagnetic (AF) spin fluctuation stems from the interband Coulomb repulsion, while the other type of intraband AF spin fluctuation originates from the intraband Coulomb repulsion. Due to the Fermi-surface topology, a spin-singlet extended s-wave superconducting state is more favorable than the nodal $d_{XY}$-wave state if the interband AF spin fluctuation is more significant than the intraband one, otherwise vice versa. It is also revealed that the effective interband coupling plays an important role in the intraband pairings, which is a distinct feature of the present two-band system.

قيم البحث

اقرأ أيضاً

We use magnetic long range order as a tool to probe the Cooper pair wave function in the iron arsenide superconductors. We show theoretically that antiferromagnetism and superconductivity can coexist in these materials only if Cooper pairs form an un conventional, sign-changing state. The observation of coexistence in Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ then demonstrates unconventional pairing in this material. The detailed agreement between theory and neutron diffraction experiments, in particular for the unusual behavior of the magnetic order below $T_{c}$, demonstrates the robustness of our conclusions. Our findings strongly suggest that superconductivity is unconventional in all members of the iron arsenide family.
We theoretically study the spin fluctuation and superconductivity in La1111 and Sm1111 iron-based superconductors for a wide range of electron doping. When we take into account the band structure variation by electron doping, the hole Fermi surface o riginating from the $d_{X^2-Y^2}$ orbital turns out to be robust against electron doping, and this gives rise to large spin fluctuations and consequently $spm$ pairing even in the heavily doped regime. The stable hole Fermi surface is larger for Sm1111 than for La1111, which can be considered as the origin of the apparent difference in the phase diagram.
81 - Maxim M. Korshunov 2017
Multiband systems, which possess a wide parameter space, allow to explore a variety of competing ground states. Bright examples are the Fe-based pnictides and chalcogenides, which demonstrate metallic, superconducting, and various magnetic phases. He re I discuss only one of the many interesting topics, namely, spin fluctuations in metallic multiband systems. I show how to calculate the effect of itinerant spin excitations on the electronic properties and formulate a theory of spin fluctuation-induced superconductivity. The superconducting state is unconventional and thus the system demonstrates unusual spin response with the spin resonance feature. I discuss its origin, consequences, and relation to experimental observations. Role of the spin-orbit coupling is specifically emphasized.
Recent measurements of Fermi surface with de Haas-van Alphen oscillations in LaFePO showed a shrinking of the Fermi pockets with respect to first-principle LDA calculations, suggesting an energy shift of the hole and electrons bands with respect to L DA. We show that these shifts are a natural consequence of the strong particle-hole asymmetry of electronic bands in pnictides, and that they provide an indirect experimental evidence of a dominant interband scattering in these systems.
We study the relation between the spin fluctuation and superconductivity in an heavily hole doped end material KFe$_2$As$_2$. We construct a five orbital model by approximately unfolding the Brillouin zone of the three dimensional ten orbital model o btained from first principles calculation. By applying the random phase approximation, we obtain the spin susceptibility and solve the linearized Eliashberg equation. The incommensurate spin fluctuation observed experimentally is understood as originating from interband interactions, where the multiorbital nature of the band structure results in an electron-hole asymmetry of the incommensurability in the whole iron-based superconductor family. As for superconductivity, s-wave and d-wave pairings are found to be in close competition, where the sign change in the gap function in the former is driven by the incommensurate spin fluctuations. We raise several possible explanations for the nodes in the superconducting gap of KFe$_2$As$_2$ observed experimentally.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا