ﻻ يوجد ملخص باللغة العربية
In this paper, we will show the Yaus gradient estimate for harmonic maps into a metric space $(X,d_X)$ with curvature bounded above by a constant $kappa$, $kappageq0$, in the sense of Alexandrov. As a direct application, it gives some Liouville theorems for such harmonic maps. This extends the works of S. Y. Cheng [4] and H. I. Choi [5] to harmonic maps into singular spaces.
In 1997, J. Jost [27] and F. H. Lin [39], independently proved that every energy minimizing harmonic map from an Alexandrov space with curvature bounded from below to an Alexandrov space with non-positive curvature is locally Holder continuous. In [3
In this paper we generalize the theory of Cheeger, Colding and Naber to certain singular spaces that arise as limits of sequences of Riemannian manifolds. This theory will have applications in the analysis of Ricci flows of bounded curvature, which we will describe in a subsequent paper.
We propose a new notion called emph{infinity-harmonic maps}between Riemannain manifolds. These are natural generalizations of the well known notion of infinity harmonic functions and are also the limiting case of $p$% -harmonic maps as $pto infty $.
Critical points of approximations of the Dirichlet energy `{a} la Sacks-Uhlenbeck are known to converge to harmonic maps in a suitable sense. However, we show that not every harmonic map can be approximated by critical points of such perturbed energi
In this paper, we establish a Bochner type formula on Alexandrov spaces with Ricci curvature bounded below. Yaus gradient estimate for harmonic functions is also obtained on Alexandrov spaces.