ﻻ يوجد ملخص باللغة العربية
In this paper we generalize the theory of Cheeger, Colding and Naber to certain singular spaces that arise as limits of sequences of Riemannian manifolds. This theory will have applications in the analysis of Ricci flows of bounded curvature, which we will describe in a subsequent paper.
In this paper, we will show the Yaus gradient estimate for harmonic maps into a metric space $(X,d_X)$ with curvature bounded above by a constant $kappa$, $kappageq0$, in the sense of Alexandrov. As a direct application, it gives some Liouville theor
In this paper we characterize non-collapsed limits of Ricci flows. We show that such limits are smooth away from a set of codimension $geq 4$ in the parabolic sense and that the tangent flows at every point are given by gradient shrinking solitons, p
We show that the space of metrics of positive scalar curvature on any 3-manifold is either empty or contractible. Second, we show that the diffeomorphism group of every 3-dimensional spherical space form deformation retracts to its isometry group. Th
By using fixed point argument we give a proof for the existence of singular rotationally symmetric steady and expanding gradient Ricci solitons in higher dimensions with metric $g=frac{da^2}{h(a^2)}+a^2g_{S^n}$ for some function $h$ where $g_{S^n}$ i
In 1997, J. Jost [27] and F. H. Lin [39], independently proved that every energy minimizing harmonic map from an Alexandrov space with curvature bounded from below to an Alexandrov space with non-positive curvature is locally Holder continuous. In [3