ﻻ يوجد ملخص باللغة العربية
Quantum mechanical tunneling of electrons across ultrathin insulating oxide barriers has been studied extensively for decades due to its great potential in electronic device applications. In the few-nanometer-thick epitaxial oxide films, atomic-scale structural imperfections, such as the ubiquitously existed one-unit-cell-high terrace edges, can dramatically affect the tunneling probability and device performance. However, the underlying physics has not been investigated adequately. Here, taking ultrathin BaTiO3 films as a model system, we report an intrinsic tunneling conductance enhancement near the terrace edges. Scanning probe microscopy results demonstrate the existence of highly-conductive regions (tens of nanometers-wide) near the terrace edges. First-principles calculations suggest that the terrace edge geometry can trigger an electronic reconstruction, which reduces the effective tunneling barrier width locally. Furthermore, such tunneling conductance enhancement can be discovered in other transition-metal-oxides and controlled by surface termination engineering. The controllable electronic reconstruction could facilitate the implementation of oxide electronic devices and discovery of exotic low-dimensional quantum phases.
The ferroelectric (FE) control of electronic transport is one of the emerging technologies in oxide heterostructures. Many previous studies in FE tunnel junctions (FTJs) exploited solely the differences in the electrostatic potential across the FTJs
The coupling between the electrical transport properties of La2/3Sr1/3MnO3 (LSMO) thin films and structural phase transitions of SrTiO3 (STO) substrates at Ts = 105 K has been investigated. We found that the electrical resistivity of LSMO films exhib
To better understand the electronic and chemical properties of wide-gap oxide surfaces at the atomic scale, experimental work has focused on epitaxial films on metal substrates. Recent findings show that these films are considerably thinner than prev
The impact of oxygen vacancies on local tunneling properties across rf-sputtered MgO thin films was investigated by optical absorption spectroscopy and conducting atomic force microscopy. Adding O$_2$ to the Ar plasma during MgO growth alters the oxy
The spin-orbit coupling and electron correlation in perovskite SrIrO3 (SIO) strongly favor new quantum states and make SIO very attractive for next generation quantum information technology. In addition, the small electronic band-width offers the pos