ﻻ يوجد ملخص باللغة العربية
The coupling between the electrical transport properties of La2/3Sr1/3MnO3 (LSMO) thin films and structural phase transitions of SrTiO3 (STO) substrates at Ts = 105 K has been investigated. We found that the electrical resistivity of LSMO films exhibit a cusp at Ts, which is greatly amplified by tuning films to the verge of metallic and insulating phases, i.e., to the boundary of two delicate competing electronic states. Our results demonstrate that small amounts of strain can tip the subtle balance of competing interactions and tune the electronic properties in correlated electron materials.
Exact and general results on the electronic states in ideal free standing films are presented. In many interesting cases, such as in FCC (001) films and in FCC (110) films, the energies of most electronic states in the film can be analytically obaine
We have investigated the influence of point defect disorder in the electronic properties of manganite films. Real-time mapping of ion irradiated samples conductivity was performed though conductive atomic force microscopy (CAFM). CAFM images show ele
We theoretically study the generic behavior of the penetration depth of the edge states in two-dimensional quantum spin Hall systems. We found that the momentum-space width of the edge-state dispersion scales with the inverse of the penetration depth
Quantum mechanical tunneling of electrons across ultrathin insulating oxide barriers has been studied extensively for decades due to its great potential in electronic device applications. In the few-nanometer-thick epitaxial oxide films, atomic-scale
Nitrogen-vacancy magnetic microscopy is employed in quenching mode as a non-invasive, high resolution tool to investigate the morphology of isolated skyrmions in ultrathin magnetic films. The skyrmion size and shape are found to be strongly affected