ﻻ يوجد ملخص باللغة العربية
The impact of oxygen vacancies on local tunneling properties across rf-sputtered MgO thin films was investigated by optical absorption spectroscopy and conducting atomic force microscopy. Adding O$_2$ to the Ar plasma during MgO growth alters the oxygen defect populations, leading to improved local tunneling characteristics such as a lower density of current hotspots and a lower tunnel current amplitude. We discuss a defect-based potential landscape across ultrathin MgO barriers.
Quantum mechanical tunneling of electrons across ultrathin insulating oxide barriers has been studied extensively for decades due to its great potential in electronic device applications. In the few-nanometer-thick epitaxial oxide films, atomic-scale
The magnetization of Pd(100) ultrathin films that show ferromagnetism due to quantum well states was manipulated by changing the quantum well state with an applied bias voltage. The voltage dependence of the magnetic moment of Pd/SrTiO$_{3-x}$/Ti/Au
We present a combined analytical and numerical micromagnetic study of the equilibrium energy, size and shape of anti-skyrmionic magnetic configurations. Anti-skyrmions can be stabilized when the Dzyaloshinskii-Moriya interaction has opposite signs al
Spin-pumping generates pure spin currents in normal metals at the ferromagnet (F)/normal metal (N) interface. The efficiency of spin-pumping is given by the spin mixing conductance, which depends on N and the F/N interface. We directly study the spin
Nitrogen-vacancy magnetic microscopy is employed in quenching mode as a non-invasive, high resolution tool to investigate the morphology of isolated skyrmions in ultrathin magnetic films. The skyrmion size and shape are found to be strongly affected