ﻻ يوجد ملخص باللغة العربية
Sparse coding is a crucial subroutine in algorithms for various signal processing, deep learning, and other machine learning applications. The central goal is to learn an overcomplete dictionary that can sparsely represent a given input dataset. However, a key challenge is that storage, transmission, and processing of the learned dictionary can be untenably high if the data dimension is high. In this paper, we consider the double-sparsity model introduced by Rubinstein et al. (2010b) where the dictionary itself is the product of a fixed, known basis and a data-adaptive sparse component. First, we introduce a simple algorithm for double-sparse coding that can be amenable to efficient implementation via neural architectures. Second, we theoretically analyze its performance and demonstrate asymptotic sample complexity and running time benefits over existing (provable) approaches for sparse coding. To our knowledge, our work introduces the first computationally efficient algorithm for double-sparse coding that enjoys rigorous statistical guarantees. Finally, we support our analysis via several numerical experiments on simulated data, confirming that our method can indeed be useful in problem sizes encountered in practical applications.
State-of-the-art methods for Convolutional Sparse Coding usually employ Fourier-domain solvers in order to speed up the convolution operators. However, this approach is not without shortcomings. For example, Fourier-domain representations implicitly
We establish that an optimistic variant of Q-learning applied to a fixed-horizon episodic Markov decision process with an aggregated state representation incurs regret $tilde{mathcal{O}}(sqrt{H^5 M K} + epsilon HK)$, where $H$ is the horizon, $M$ is
We propose a new method for learning word representations using hierarchical regularization in sparse coding inspired by the linguistic study of word meanings. We show an efficient learning algorithm based on stochastic proximal methods that is signi
The recently proposed multi-layer sparse model has raised insightful connections between sparse representations and convolutional neural networks (CNN). In its original conception, this model was restricted to a cascade of convolutional synthesis rep
Tensor data often suffer from missing value problem due to the complex high-dimensional structure while acquiring them. To complete the missing information, lots of Low-Rank Tensor Completion (LRTC) methods have been proposed, most of which depend on