ﻻ يوجد ملخص باللغة العربية
The tunable bandgap from 0.3 eV to 2 eV of black phosphorus (BP) makes it to fill the gap in graphene. When studying the properties of BP more comprehensive, scientists have discovered that many two-dimensional materials, such as tellurene, antimonene, bismuthene, indium selenide and tin sulfide, have similar structures and properties to black phosphorus thus called black phosphorus analogs. In this review, we briefly introduce preparation methods of black phosphorus and its analogs, with emphasis on the method of mechanical exfoliation (ME), liquid phase exfoliation (LPE) and chemical vapor deposition (CVD). And their characterization and properties according to their classification of single-element materials and multi-element materials are described. We focus on the performance of passively mode-locked fiber lasers using BP and its analogs as saturable absorbers (SA) and demonstrated this part through classification of working wavelength. Finally, we introduce the application of BP and its analogs, and discuss their future research prospects.
We report measurements of the infrared optical response of thin black phosphorus under field-effect modulation. We interpret the observed spectral changes as a combination of an ambipolar Burstein-Moss (BM) shift of the absorption edge due to band-fi
Black phosphorus (BP) is an emerging two-dimensional semiconducting material with great potential for nanoelectronic and nanophotonic applications, especially owing to its unique anisotropic electrical and optical properties. Many theoretical studies
The discovery of graphene and the related fascinating capabilities have triggered an unprecedented interest in inorganic two-dimensional (2D) materials. Despite the impressive impact in a variety of photonic applications, the absence of energy gap ha
Layered and two-dimensional (2D) materials such as graphene, boron nitride, transition metal dichalcogenides(TMDCs), and black phosphorus (BP) have intriguing fundamental physical properties and bear promise of numerous important applications in elec
Raman scattering and photoluminescence spectroscopy are used to investigate the optical properties of single layer black phosphorus obtained by mechanical exfoliation of bulk crystals under an argon atmosphere. The Raman spectroscopy, performed in si