ﻻ يوجد ملخص باللغة العربية
Motivated by the resurgence of neural networks in being able to solve complex learning tasks we undertake a study of high depth networks using ReLU gates which implement the function $x mapsto max{0,x}$. We try to understand the role of depth in such neural networks by showing size lowerbounds against such network architectures in parameter regimes hitherto unexplored. In particular we show the following two main results about neural nets computing Boolean functions of input dimension $n$, 1. We use the method of random restrictions to show almost linear, $Omega(epsilon^{2(1-delta)}n^{1-delta})$, lower bound for completely weight unrestricted LTF-of-ReLU circuits to match the Andreev function on at least $frac{1}{2} +epsilon$ fraction of the inputs for $epsilon > sqrt{2frac{log^{frac {2}{2-delta}}(n)}{n}}$ for any $delta in (0,frac 1 2)$ 2. We use the method of sign-rank to show exponential in dimension lower bounds for ReLU circuits ending in a LTF gate and of depths upto $O(n^{xi})$ with $xi < frac{1}{8}$ with some restrictions on the weights in the bottom most layer. All other weights in these circuits are kept unrestricted. This in turns also implies the same lowerbounds for LTF circuits with the same architecture and the same weight restrictions on their bottom most layer. Along the way we also show that there exists a $mathbb{R}^ nrightarrow mathbb{R}$ Sum-of-ReLU-of-ReLU function which Sum-of-ReLU neural nets can never represent no matter how large they are allowed to be.
This paper considers the growth in the length of one-dimensional trajectories as they are passed through deep ReLU neural networks, which, among other things, is one measure of the expressivity of deep networks. We generalise existing results, provid
A recent line of work has analyzed the theoretical properties of deep neural networks via the Neural Tangent Kernel (NTK). In particular, the smallest eigenvalue of the NTK has been related to the memorization capacity, the global convergence of grad
Let $mathcal{F}_{n}^*$ be the set of Boolean functions depending on all $n$ variables. We prove that for any $fin mathcal{F}_{n}^*$, $f|_{x_i=0}$ or $f|_{x_i=1}$ depends on the remaining $n-1$ variables, for some variable $x_i$. This existent result
We study ReLU deep neural networks (DNNs) by investigating their connections with the hierarchical basis method in finite element methods. First, we show that the approximation schemes of ReLU DNNs for $x^2$ and $xy$ are compositio
In this paper, we construct neural networks with ReLU, sine and $2^x$ as activation functions. For general continuous $f$ defined on $[0,1]^d$ with continuity modulus $omega_f(cdot)$, we construct ReLU-sine-$2^x$ networks that enjoy an approximation