ﻻ يوجد ملخص باللغة العربية
We give an upper bound of the relative entanglement entropy of the ground state of a massive Dirac-Majorana field across two widely separated regions $A$ and $B$ in a static slice of an ultrastatic Lorentzian spacetime. Our bound decays exponentially in $dist (A, B)$, at a rate set by the Compton wavelength and the spatial scalar curvature. The physical interpretation our result is that, on a manifold with positive spatial scalar curvature, one cannot use the entanglement of the vacuum state to teleport one classical bit from $A$ to $B$ if their distance is of the order of the maximum of the curvature radius and the Compton wave length or greater.
We describe a new mechanism - radiatively-induced gravitational leptogenesis - for generating the matter-antimatter asymmetry of the Universe. We show how quantum loop effects in C and CP violating theories cause matter and antimatter to propagate di
We focus on the Penroses Weyl Curvature Hypothesis in a general framework encompassing many specific models discussed in literature. We introduce a candidate density for the Weyl entropy in pure spacetime perfect fluid regions and show that it is mon
A boundary undergoing relativistic motion can create particles from quantum vacuum fluctuations in a phenomenon known as the dynamical Casimir effect. We examine the creation of particles, and more generally the transformation of quantum field states
We propose a covariant scheme for measuring entanglement on general hypersurfaces in relativistic quantum field theory. For that, we introduce an auxiliary relativistic field, the discretizer, that by locally interacting with the field along a hypers
A general formula is calculated for the connection of a central metric w.r.t. a noncommutative spacetime of Lie-algebraic type. This is done by using the framework of linear connections on central bi-modules. The general formula is further on used to