ترغب بنشر مسار تعليمي؟ اضغط هنا

A Weyl Entropy of Pure Spacetime Regions

90   0   0.0 ( 0 )
 نشر من قبل Giovanni Catino
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We focus on the Penroses Weyl Curvature Hypothesis in a general framework encompassing many specific models discussed in literature. We introduce a candidate density for the Weyl entropy in pure spacetime perfect fluid regions and show that it is monotonically increasing in time under very general assumptions. Then we consider the behavior of the Weyl entropy of compact regions, which is shown to be monotone in time as well under suitable hypotheses, and also maximal in correspondence with vacuum static metrics. The minimal entropy case is discussed too.

قيم البحث

اقرأ أيضاً

87 - E. Minguzzi 2017
In a recent work I showed that the family of smooth steep time functions can be used to recover the order, the topology and the (Lorentz-Finsler) distance of spacetime. In this work I present the main ideas entering the proof of the (smooth) distance formula, particularly the product trick which converts metric statements into causal ones. The paper ends with a second proof of the distance formula valid in globally hyperbolic Lorentzian spacetimes.
We give an upper bound of the relative entanglement entropy of the ground state of a massive Dirac-Majorana field across two widely separated regions $A$ and $B$ in a static slice of an ultrastatic Lorentzian spacetime. Our bound decays exponentially in $dist (A, B)$, at a rate set by the Compton wavelength and the spatial scalar curvature. The physical interpretation our result is that, on a manifold with positive spatial scalar curvature, one cannot use the entanglement of the vacuum state to teleport one classical bit from $A$ to $B$ if their distance is of the order of the maximum of the curvature radius and the Compton wave length or greater.
201 - Xiaoxiang Chai 2021
We study a perturbation begin{equation} Delta u + P | abla u| = h | abla u|, end{equation} of spacetime Laplacian equation in an initial data set $(M, g, p)$ where $P$ is the trace of the symmetric 2-tensor $p$ and $h$ is a smooth function.
68 - Andrew Chamblin 2003
We consider the entropy bounds recently conjectured by Fischler, Susskind and Bousso, and proven in certain cases by Flanagan, Marolf and Wald (FMW). One of the FMW derivations supposes a covariant form of the Bekenstein entropy bound, the consequenc es of which we explore. The derivation also suggests that the entropy contained in a vacuum spacetime, e.g. Schwarzschild, is related to the shear on congruences of null rays. We find evidence for this intuition, but in a surprising way. We compare the covariant entropy bound to certain earlier discussions of black hole entropy, and comment on the separate roles of quantum mechanics and gravity in the entropy bound.
Using the methods of ordinary quantum mechanics we study $kappa$-Minkowski space as a quantum space described by noncommuting self-adjoint operators, following and enlarging arXiv:1811.08409. We see how the role of Fourier transforms is played in thi s case by Mellin transforms. We briefly discuss the role of transformations and observers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا