ﻻ يوجد ملخص باللغة العربية
Line emission is strongly dependent on the local environmental conditions in which the emitting tracers reside. In this work, we focus on modelling the CO emission from simulated giant molecular clouds (GMCs), and study the variations in the resulting line ratios arising from the emission from the $J=1-0$, $J=2-1$ and $J=3-2$ transitions. We perform a set of smoothed particle hydrodynamics (SPH) simulations with time-dependent chemistry, in which environmental conditions -- including total cloud mass, density, size, velocity dispersion, metallicity, interstellar radiation field (ISRF) and the cosmic ray ionisation rate (CRIR) -- were systematically varied. The simulations were then post-processed using radiative transfer to produce synthetic emission maps in the 3 transitions quoted above. We find that the cloud-averaged values of the line ratios can vary by up to $pm 0.3$ dex, triggered by changes in the environmental conditions. Changes in the ISRF and/or in the CRIR have the largest impact on line ratios since they directly affect the abundance, temperature and distribution of CO-rich gas within the clouds. We show that the standard methods used to convert CO emission to H$_2$ column density can underestimate the total H$_2$ molecular gas in GMCs by factors of 2 or 3, depending on the environmental conditions in the clouds.
Ten protostellar outflows in the Orion molecular clouds were mapped in the $^{12}$CO/$^{13}$CO ${J=6rightarrow5}$ and $^{12}$CO ${J=7rightarrow6}$ lines. The maps of these mid-$J$ CO lines have an angular resolution of about 10$$ and a typical field
N131 is a typical infrared dust bubble showing an expanding ringlike shell. We study what kinds of CO line ratios can be used to trace the interaction in the expanding bubble. We carry out new $rm CO,(3-2)$ observations towards bubble N131 using the
Spectral line survey observations of 7 molecular clouds in the Large Magellanic Cloud (LMC) have been conducted in the 3 mm band with the Mopra 22 m telescope to reveal chemical compositions in low metallicity conditions. Spectral lines of fundamenta
Using hydrodynamical simulations of a Milky Way-like galaxy, reaching 4.6 pc resolution, we study how the choice of star formation criteria impacts both galactic and Giant Molecular Clouds (GMC) scales. We find that using a turbulent, self-gravitatin
Using a source selection biased towards high mass star forming regions, we used a Large Velocity Gradient (LVG) code to calculate the H2 densities and CS column densities for a sample of Midcourse Space Experiment (MSX) 8 micron infrared dark cores.