ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical Properties and Scaling Relations of Molecular Clouds: the Impact of Star Formation

111   0   0.0 ( 0 )
 نشر من قبل Kearn Grisdale
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kearn Grisdale




اسأل ChatGPT حول البحث

Using hydrodynamical simulations of a Milky Way-like galaxy, reaching 4.6 pc resolution, we study how the choice of star formation criteria impacts both galactic and Giant Molecular Clouds (GMC) scales. We find that using a turbulent, self-gravitating star formation criteria leads to an increase in the fraction of gas with densities between 10 and 10$^4$ cm$^{-3}$ when compared with a simulation using a molecular star formation method, despite both having nearly identical gaseous and stellar morphologies. Furthermore, we find that the site of star formation is effected with the the former tending to only produce stars in regions of very high density ($gt 10$ cm$^{-3}$) gas while the latter forms stars along the entire length of its spiral arms. The properties of GMCs are impacted by the choice of star formation criteria with the former method producing larger clouds. Despite the differences we find that the relationships between clouds properties, such as the Larson relations, remain unaffected. Finally, the scatter in the measured star formation efficiency per free-fall time of GMCs remains present with both methods and is thus set by other factors.

قيم البحث

اقرأ أيضاً

Using hydrodynamical simulations of entire galactic discs similar to the Milky Way, reaching 4.6pc resolution, we study the origins of observed physical properties of giant molecular clouds (GMCs). We find that efficient stellar feedback is a necessa ry ingredient in order to develop a realistic interstellar medium (ISM), leading to molecular cloud masses, sizes, velocity dispersions and virial parameters in excellent agreement with Milky Way observations. GMC scaling relations observed in the Milky Way, such as the mass-size ($M$--$R$), velocity dispersion-size ($sigma$--$R$), and the $sigma$--$RSigma$ relations, are reproduced in a feedback driven ISM when observed in projection, with $Mpropto R^{2.3}$ and $sigmapropto R^{0.56}$. When analysed in 3D, GMC scaling relations steepen significantly, indicating potential limitations of our understanding of molecular cloud 3D structure from observations. Furthermore, we demonstrate how a GMC populations underlying distribution of virial parameters can strongly influence the scatter in derived scaling relations. Finally, we show that GMCs with nearly identical global properties exist in different evolutionary stages, where a majority of clouds being either gravitationally bound or expanding, but with a significant fraction being compressed by external ISM pressure, at all times.
We test some ideas for star formation relations against data on local molecular clouds. On a cloud by cloud basis, the relation between the surface density of star formation rate and surface density of gas divided by a free-fall time, calculated from the mean cloud density, shows no significant correlation. If a crossing time is substituted for the free-fall time, there is even less correlation. Within a cloud, the star formation rate volume and surface densities increase rapidly with the corresponding gas densities, faster than predicted by models using the free-fall time defined from the local density. A model in which the star formation rate depends linearly on the mass of gas above a visual extinction of 8 mag describes the data on these clouds, with very low dispersion. The data on regions of very massive star formation, with improved star formation rates based on free-free emission from ionized gas, also agree with this linear relation.
Aims: The complexity of star formation at the physical scale of molecular clouds is not yet fully understood. We investigate the mechanisms regulating the formation of stars in different environments within nearby star-forming galaxies from the PHANG S sample. Methods: Integral field spectroscopic data and radio-interferometric observations of 18 galaxies were combined to explore the existence of the resolved star formation main sequence (rSFMS), resolved Kennicutt-Schmidt relation (rKS), and resolved molecular gas main sequence (rMGMS), and we derived their slope and scatter at spatial resolutions from 100 pc to 1 kpc (under various assumptions). Results: All three relations were recovered at the highest spatial resolution (100 pc). Furthermore, significant variations in these scaling relations were observed across different galactic environments. The exclusion of non-detections has a systematic impact on the inferred slope as a function of the spatial scale. Finally, the scatter of the $Sigma_mathrm{mol. gas + stellar}$ versus $Sigma_mathrm{SFR}$ correlation is smaller than that of the rSFMS, but higher than that found for the rKS. Conclusions: The rMGMS has the tightest relation at a spatial scale of 100 pc (scatter of 0.34 dex), followed by the rKS (0.41 dex) and then the rSFMS (0.51 dex). This is consistent with expectations from the timescales involved in the evolutionary cycle of molecular clouds. Surprisingly, the rKS shows the least variation across galaxies and environments, suggesting a tight link between molecular gas and subsequent star formation. The scatter of the three relations decreases at lower spatial resolutions, with the rKS being the tightest (0.27 dex) at a spatial scale of 1 kpc. Variation in the slope of the rSFMS among galaxies is partially due to different detection fractions of $Sigma_mathrm{SFR}$ with respect to $Sigma_mathrm{stellar}$.
Giant molecular clouds (GMCs) are the primary reservoirs of cold, star-forming molecular gas in the Milky Way and similar galaxies, and thus any understanding of star formation must encompass a model for GMC formation, evolution, and destruction. The se models are necessarily constrained by measurements of interstellar molecular and atomic gas, and the emergent, newborn stars. Both observations and theory have undergone great advances in recent years, the latter driven largely by improved numerical simulations, and the former by the advent of large-scale surveys with new telescopes and instruments. This chapter offers a thorough review of the current state of the field.
We investigate Schmidts conjecture (i.e., that the star formation rate scales in a power-law fashion with the gas density) for four well-studied local molecular clouds (GMCs). Using the Bayesian methodology we show that a local Schmidt scaling relati on of the form Sigma*(A_K) = kappa x (A_K)^{beta} (protostars pc^{-2}) exists within (but not between) GMCs. Further we find that the Schmidt scaling law, by itself, does not provide an adequate description of star formation activity in GMCs. Because the total number of protostars produced by a cloud is given by the product of Sigma*(A_K) and S(> A_K), the differential surface area distribution function, integrated over the entire cloud, the clouds structure plays a fundamental role in setting the level of its star formation activity. For clouds with similar functional forms of Sigma*(A_K), observed differences in their total SFRs are primarily due to the differences in S(> A_K) between the clouds. The coupling of Sigma*(A_K) with the measured S(> A_K) in these clouds also produces a steep jump in the SFR and protostellar production above A_K ~ 0.8 magnitudes. Finally, we show that there is no global Schmidt law that relates the star formation rate and gas mass surface densities between GMCs. Consequently, the observed Kennicutt-Schmidt scaling relation for disk galaxies is likely an artifact of unresolved measurements of GMCs and not a result of any underlying physical law of star formation characterizing the molecular gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا