ﻻ يوجد ملخص باللغة العربية
N131 is a typical infrared dust bubble showing an expanding ringlike shell. We study what kinds of CO line ratios can be used to trace the interaction in the expanding bubble. We carry out new $rm CO,(3-2)$ observations towards bubble N131 using the JCMT 15-m telescope, and derive line ratios by combining with our previous $rm CO,(2-1)$ and $rm CO,(1-0)$ data from the IRAM 30-m telescope observations. To trace the interaction between the molecular gas and the ionized gas in the HII region, we use RADEX to model the dependence of CO line ratios on kinetic temperature and H$_2$ volume density, and examine the abnormal line ratios based on other simulations. We present $rm CO,(3-2)$, $rm CO,(2-1)$, and $rm CO,(1-0)$ integrated intensity maps convolved to the same angular resolution (22.5$$). The three different CO transition maps show apparently similar morphology. The line ratios of $W_{rm CO,(3-2)}$/$W_{rm CO,(2-1)}$ mostly range from 0.2 to 1.2 with a median of $0.54pm0.12$, while the line ratios of $W_{rm CO,(2-1)}$/$W_{rm CO,(1-0)}$ range from 0.5 to 1.6 with a median of $0.84pm0.15$. The high CO line ratios $W_{rm CO,(3-2)}$/$W_{rm CO,(2-1)}gtrsim 0.8 $ and $W_{rm CO,(2-1)}$/$W_{rm CO,(1-0)}gtrsim 1.2$ are beyond the threshold predicted by numerical simulations based on the assumed density-temperature structure for the inner rims of ringlike shell, where are the compressed areas in bubble N131. These high CO integrated intensity ratios, such as $W_{rm CO,(3-2)}$/$W_{rm CO,(2-1)}gtrsim0.8$ and $W_{rm CO,(2-1)}$/$W_{rm CO,(1-0)}gtrsim1.2$, can be used as a tracer of gas compressed regions with a relatively high temperature and density. This further suggests that the non-Gaussian part of the line-ratio distribution can be used to trace the interaction between the molecular gas and the hot gas in the bubble.
It is well established that the chemical structure of the Milky Way exhibits a bimodality with respect to the $alpha$-enhancement of stars at a given [Fe/H]. This has been studied largely based on a bulk $alpha$ abundance, computed as a summary of se
Line emission is strongly dependent on the local environmental conditions in which the emitting tracers reside. In this work, we focus on modelling the CO emission from simulated giant molecular clouds (GMCs), and study the variations in the resultin
We present Atacama Large Millimeter/sub-millimeter Array (ALMA) observations towards 27 low-redshift ($0.02< z<0.2$) star-forming galaxies taken from the Valparaiso ALMA/APEX Line Emission Survey (VALES). We perform stacking analyses of the $^{12}$CO
Recent state-of-the-art calculations of A-values and electron impact excitation rates for Fe III are used in conjunction with the Cloudy modeling code to derive emission line intensity ratios for optical transitions among the fine-structure levels of
The Millimetre Astronomy Legacy Team 90 GHz (MALT90) survey has detected high-mass star-forming clumps with anomalous N$_2$H$^+$/HCO$^+$(1-0) integrated intensity ratios that are either unusually high (N$_2$H$^+$ rich) or unusually low (N$_2$H$^+$ po