ﻻ يوجد ملخص باللغة العربية
We combine Dark Energy Survey Year 1 clustering and weak lensing data with Baryon Acoustic Oscillations (BAO) and Big Bang Nucleosynthesis (BBN) experiments to constrain the Hubble constant. Assuming a flat $Lambda$CDM model with minimal neutrino mass ($sum m_ u = 0.06$ eV) we find $H_0=67.2^{+1.2}_{-1.0}$ km/s/Mpc (68% CL). This result is completely independent of Hubble constant measurements based on the distance ladder, Cosmic Microwave Background (CMB) anisotropies (both temperature and polarization), and strong lensing constraints. There are now five data sets that: a) have no shared observational systematics; and b) each constrain the Hubble constant with a few percent level precision. We compare these five independent measurements, and find that, as a set, the differences between them are significant at the $2.1sigma$ level ($chi^2/dof=20.1/11$, probability to exceed=4%). This difference is low enough that we consider the data sets statistically consistent with each other. The best fit Hubble constant obtained by combining all five data sets is $H_0 = 69.1^{+0.4}_{-0.6}$ km/s/Mpc.
We define and characterise a sample of 1.3 million galaxies extracted from the first year of Dark Energy Survey data, optimised to measure Baryon Acoustic Oscillations in the presence of significant redshift uncertainties. The sample is dominated by
In this paper we present and validate the galaxy sample used for the analysis of the Baryon Acoustic Oscillation signal (BAO) in the Dark Energy Survey (DES) Y3 data. The definition is based on a colour and redshift-dependent magnitude cut optimized
Mock catalogues are a crucial tool in the analysis of galaxy surveys data, both for the accurate computation of covariance matrices, and for the optimisation of analysis methodology and validation of data sets. In this paper, we present a set of 1800
We cross-correlate galaxy weak lensing measurements from the Dark Energy Survey (DES) year-one (Y1) data with a cosmic microwave background (CMB) weak lensing map derived from South Pole Telescope (SPT) and Planck data, with an effective overlapping
We present calibrations of the redshift distributions of redMaGiC galaxies in the Dark Energy Survey Year 1 (DES Y1) and Sloan Digital Sky Survey (SDSS) DR8 data. These results determine the priors of the redshift distribution of redMaGiC galaxies, w