ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Energy Survey Year 3 Results: Galaxy Sample for BAO Measurement

98   0   0.0 ( 0 )
 نشر من قبل Aurelio Carnero Rosell
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present and validate the galaxy sample used for the analysis of the Baryon Acoustic Oscillation signal (BAO) in the Dark Energy Survey (DES) Y3 data. The definition is based on a colour and redshift-dependent magnitude cut optimized to select galaxies at redshifts higher than 0.5, while ensuring a high quality photometric redshift determination. The sample covers $approx 4100$ square degrees to a depth of $i = 22.3 (AB)$ at $10sigma$. It contains 7,031,993 galaxies in the redshift range from $z$= 0.6 to 1.1, with a mean effective redshift of 0.835. Photometric redshifts are estimated with the machine learning algorithm DNF, and are validated using the VIPERS PDR2 sample. We find a mean redshift bias of $z_{mathrm{bias}} approx 0.01$ and a mean uncertainty, in units of $1+z$, of $sigma_{68} approx 0.03$. We evaluate the galaxy population of the sample, showing it is mostly built upon Elliptical to Sbc types. Furthermore, we find a low level of stellar contamination of $lesssim 4%$. We present the method used to mitigate the effect of spurious clustering coming from observing conditions and other large-scale systematics. We apply it to the DES Y3 BAO sample and calculate sample weights that are used to get a robust estimate of the galaxy clustering signal. This paper is one of a series dedicated to the analysis of the BAO signal in the DES Y3 data. In the companion papers, Ferrero et al. (2021) and DES Collaboration (2021), we present the galaxy mock catalogues used to calibrate the analysis and the angular diameter distance constraints obtained through the fitting to the BAO scale, respectively. The galaxy sample, masks and additional material will be released in the public DES data repository upon acceptance.



قيم البحث

اقرأ أيضاً

We define and characterise a sample of 1.3 million galaxies extracted from the first year of Dark Energy Survey data, optimised to measure Baryon Acoustic Oscillations in the presence of significant redshift uncertainties. The sample is dominated by luminous red galaxies located at redshifts $z gtrsim 0.6$. We define the exact selection using color and magnitude cuts that balance the need of high number densities and small photometric redshift uncertainties, using the corresponding forecasted BAO distance error as a figure-of-merit in the process. The typical photo-$z$ uncertainty varies from $2.3%$ to $3.6%$ (in units of 1+$z$) from $z=0.6$ to $1$, with number densities from $200$ to $130$ galaxies per deg$^2$ in tomographic bins of width $Delta z = 0.1$. Next we summarise the validation of the photometric redshift estimation. We characterise and mitigate observational systematics including stellar contamination, and show that the clustering on large scales is robust in front of those contaminants. We show that the clustering signal in the auto-correlations and cross-correlations is generally consistent with theoretical models, which serves as an additional test of the redshift distributions.
The calibration and validation of scientific analysis in simulations is a fundamental tool to ensure unbiased and robust results in observational cosmology. In particular, mock galaxy catalogs are a crucial resource to achieve these goals in the meas urement of Baryon Acoustic Oscillations (BAO) in the clustering of galaxies. Here we present a set of 1952 galaxy mock catalogs designed to mimic the Dark Energy Survey (DES) Year 3 BAO sample over its full photometric redshift range $0.6 < z_{rm photo} < 1.1$. The mocks are based upon 488 ICE-COLA fast $N$-body simulations of full-sky light-cones and are created by populating halos with galaxies, using a hybrid Halo Occupation Distribution - Halo Abundance Matching model. This model has 10 free parameters, which are determined, for the first time, using an automatic likelihood minimization procedure. We also introduce a novel technique to assign photometric redshift for simulated galaxies, following a two-dimensional probability distribution with VIMOS Public Extragalactic Redshift Survey (VIPERS) data. The calibration was designed to match the observed abundance of galaxies as a function of photometric redshift, the distribution of photometric redshift errors, and the clustering amplitude on scales smaller than those used for BAO measurements. An exhaustive analysis is done to ensure that the mocks reproduce the input properties. Finally, mocks are tested by comparing the angular correlation function $w(theta)$, angular power spectrum $C_ell$ and projected clustering $xi_p(r_perp)$ to theoretical predictions and data. The success in reproducing accurately the photometric redshift uncertainties and the galaxy clustering as a function of redshift render this mock creation pipeline as a benchmark for future analyses of photometric galaxy surveys.
83 - S. Avila , M. Crocce , A.J. Ross 2017
Mock catalogues are a crucial tool in the analysis of galaxy surveys data, both for the accurate computation of covariance matrices, and for the optimisation of analysis methodology and validation of data sets. In this paper, we present a set of 1800 galaxy mock catalogues designed to match the Dark Energy Survey Year-1 BAO sample (Crocce et al. 2017) in abundance, observational volume, redshift distribution and uncertainty, and redshift dependent clustering. The simulated samples were built upon HALOGEN (Avila et al. 2015) halo catalogues, based on a $2LPT$ density field with an exponential bias. For each of them, a lightcone is constructed by the superposition of snapshots in the redshift range $0.45<z<1.4$. Uncertainties introduced by so-called photometric redshifts estimators were modelled with a textit{double-skewed-Gaussian} curve fitted to the data. We also introduce a hybrid HOD-HAM model with two free parameters that are adjusted to achieve a galaxy bias evolution $b(z_{rm ph})$ that matches the data at the 1-$sigma$ level in the range $0.6<z_{rm ph}<1.0$. We further analyse the galaxy mock catalogues and compare their clustering to the data using the angular correlation function $ w(theta)$, the comoving transverse separation clustering $xi_{mu<0.8}(s_{perp})$ and the angular power spectrum $C_ell$.
96 - J. Prat , J. Blazek , C. Sanchez 2021
We present and characterize the galaxy-galaxy lensing signal measured using the first three years of data from the Dark Energy Survey (DES Y3) covering 4132 deg$^2$. These galaxy-galaxy measurements are used in the DES Y3 3$times$2pt cosmological ana lysis, which combines weak lensing and galaxy clustering information. We use two lens samples: a magnitude-limited sample and the redMaGic sample, which span the redshift range $sim 0.2-1$ with 10.7 M and 2.6 M galaxies respectively. For the source catalog, we use the Metacalibration shape sample, consisting of $simeq$100 M galaxies separated into 4 tomographic bins. Our galaxy-galaxy lensing estimator is the mean tangential shear, for which we obtain a total S/N of $sim$148 for MagLim ($sim$120 for redMaGic), and $sim$67 ($sim$55) after applying the scale cuts of 6 Mpc/$h$. Thus we reach percent-level statistical precision, which requires that our modeling and systematic-error control be of comparable accuracy. The tangential shear model used in the 3$times$2pt cosmological analysis includes lens magnification, a five-parameter intrinsic alignment model (TATT), marginalization over a point-mass to remove information from small scales and a linear galaxy bias model validated with higher-order terms. We explore the impact of these choices on the tangential shear observable and study the significance of effects not included in our model, such as reduced shear, source magnification and source clustering. We also test the robustness of our measurements to various observational and systematics effects, such as the impact of observing conditions, lens-source clustering, random-point subtraction, scale-dependent Metacalibration responses, PSF residuals, and B-modes.
Galaxy-galaxy lensing is a powerful probe of the connection between galaxies and their host dark matter halos, which is important both for galaxy evolution and cosmology. We extend the measurement and modeling of the galaxy-galaxy lensing signal in t he recent Dark Energy Survey Year 3 cosmology analysis to the highly nonlinear scales ($sim 100$ kpc). This extension enables us to study the galaxy-halo connection via a Halo Occupation Distribution (HOD) framework for the two lens samples used in the cosmology analysis: a luminous red galaxy sample (redMaGiC) and a magnitude-limited galaxy sample (MagLim). We find that redMaGiC (MagLim) galaxies typically live in dark matter halos of mass $log_{10}(M_{h}/M_{odot}) approx 13.7$ which is roughly constant over redshift ($13.3-13.5$ depending on redshift). We constrain these masses to $sim 15%$, approximately $1.5$ times improvement over previous work. We also constrain the linear galaxy bias more than 5 times better than what is inferred by the cosmological scales only. We find the satellite fraction for redMaGiC (MagLim) to be $sim 0.1-0.2$ ($0.1-0.3$) with no clear trend in redshift. Our constraints on these halo properties are broadly consistent with other available estimates from previous work, large-scale constraints and simulations. The framework built in this paper will be used for future HOD studies with other galaxy samples and extensions for cosmological analyses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا