ﻻ يوجد ملخص باللغة العربية
The proposed LDMX experiment would provide roughly a meter-long region of instrumented tracking and calorimetry that acts as a beam stop for multi-GeV electrons in which each electron is tagged and its evolution measured. This would offer an unprecedented opportunity to access both collider-invisible and ultra-short lifetime decays of new particles produced in electron (or muon)-nuclear fixed-target collisions. In this paper, we show that the missing momentum channel and displaced decay signals in such an experiment could provide world-leading sensitivity to sub-GeV dark matter, millicharged particles, and visibly or invisibly decaying axions, scalars, dark photons, and a range of other new physics scenarios.
We propose a vector dark matter model with an exotic dark SU(2) gauge group. Two Higgs triplets are introduced to spontaneously break the symmetry. All of the dark gauge bosons become massive, and the lightest one is a viable vector DM candidate. Its
We present an initial design study for LDMX, the Light Dark Matter Experiment, a small-scale accelerator experiment having broad sensitivity to both direct dark matter and mediator particle production in the sub-GeV mass region. LDMX employs missing
We point out the possibility to test the simplest scalar dark matter model at gamma-ray telescopes. We discuss the relevant constraints and show the predictions for direct detection, gamma line searches and LHC searches. Since the final state radiati
Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly compelling possibility for new physics. Nature may contain numerous dark sectors, each wi
A number of proposed and ongoing experiments search for axion dark matter with a mass nearing the limit set by small scale structure (${cal O} ( 10 ^{ - 21 } {rm eV} ) $). We consider the late universe cosmology of these models, showing that requirin