ﻻ يوجد ملخص باللغة العربية
Quantum nanoelectronics has entered an era where quantum electrical currents are built from single to few on-demand elementary excitations. To date however, very limited tools have been implemented to characterize them. In this work, we present a quantum current analyzer able to extract single particle excitations present within a periodic quantum electrical current without any a priori hypothesis. Our analyzer combines two-particle interferometry and signal processing to extract the relevant electron and hole wavefunctions localized around each emission period and their quantum coherence from one emission period to the other. This quantum current analyzer opens new possibilities for the characterization and control of quantum electrical currents in nanoscale conductors and for investigations of entanglement in quantum electronics down to the single electron level.
The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zer
Controlling electrons at the level of elementary charge $e$ has been demonstrated experimentally already in the 1980s. Ever since, producing an electrical current $ef$, or its integer multiple, at a drive frequency $f$ has been in a focus of research
We study synchronized quantized charge pumping through several dynamical quantum dots (QDs) driven by a single time modulated gate signal. We show that the main obstacle for synchronization being the lack of uniformity can be overcome by operating th
The recent development of all-electrical electron spin resonance (ESR) in a scanning tunneling microscope (STM) setup has opened the door to vast applications. Despite the fast growing number of experimental works on STM-ESR, the fundamental principl
We have suspended an Al based single-electron transistor whose island can resonate freely between the source and drain leads forming the clamps. In addition to the regular side gate, a bottom gate with a larger capacitance to the SET island is placed