ترغب بنشر مسار تعليمي؟ اضغط هنا

A cotunneling mechanism for all-electrical Electron Spin Resonance of single adsorbed atoms

105   0   0.0 ( 0 )
 نشر من قبل Fernando Delgado Acosta
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent development of all-electrical electron spin resonance (ESR) in a scanning tunneling microscope (STM) setup has opened the door to vast applications. Despite the fast growing number of experimental works on STM-ESR, the fundamental principles remains unclear. By using a cotunneling picture, we show that the spin resonance signal can be explained as a time-dependent variation of the tunnel barrier induced by the alternating electric driving field. We demonstrate how this variation translates into the resonant frequency response of the direct current. Our cotunneling theory explains the main experimental findings. Namely, the linear dependence of the Rabi flop rate with the alternating bias amplitude, the absence of resonant response for spin-unpolarized currents, and the weak dependence on the actual atomic species.



قيم البحث

اقرأ أيضاً

We propose a method to electrically control electron spins in donor-based qubits in silicon. By taking advantage of the hyperfine coupling difference between a single-donor and a two-donor quantum dot, spin rotation can be driven by inducing an elect ric dipole between them and applying an alternating electric field generated by in-plane gates. These qubits can be coupled with exchange interaction controlled by top detuning gates. The qubit device can be fabricated deep in the silicon lattice with atomic precision by scanning tunneling probe technique. We have combined a large-scale full band atomistic tight-binding modeling approach with a time-dependent effective Hamiltonian description, providing a design with quantitative guidelines.
Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglemen t operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of the electron spin resonance is possible.
149 - A. S. Vasenko , D. M. Basko , 2014
We study the thermoelectric transport of a small metallic island weakly coupled to two electrodes by tunnel junctions. In the Coulomb blockade regime, in the case when the ground state of the system corresponds to an even number of electrons on the i sland, the main mechanism of electron transport at lowest temperatures is elastic cotunneling. In this regime, the transport coefficients strongly depend on the realization of the random impurity potential or the shape of the island. Using the random-matrix theory, we calculate the thermopower and the thermoelectric kinetic coefficient and study the statistics of their mesoscopic fluctuations in the elastic cotunneling regime. The fluctuations of the thermopower turn out to be much larger than the average value.
Magnetic resonance imaging (MRI) revolutionized diagnostic medicine and biomedical research by allowing a noninvasive access to spin ensembles. To enhance MRI resolution to the nanometer scale, new approaches including scanning probe methods have bee n used in recent years, which culminated in detection of individual spins. This allowed three-dimensional (3D) visualization of organic samples and of sophisticated spin-structures. Here, we demonstrate for the first time MRI of individual atoms on a surface. The setup, implemented in a cryogenic scanning tunneling microscope (STM), uses single-atom electron spin resonance (ESR) to achieve sub-{AA}ngstrom resolution exceeding the spatial resolution of previous experiments by one to two orders of magnitude. We find that MRI scans of different atomic species and probe tips lead to unique signatures in the resonance images. These signatures reveal the magnetic interactions between the tip and the atom, in particular magnetic dipolar and exchange interaction.
We successfully demonstrated experimentally the electrical-field-mediated control of the spin of electrons confined in an SOI Quantum Dot (QD) device fabricated with a standard CMOS process flow. Furthermore, we show that the Back-Gate control in SOI devices enables switching a quantum bit (qubit) between an electrically-addressable, yet charge noise-sensitive configuration, and a protected configuration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا