ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of mechanical resonance of a single-electron transistor by direct current

175   0   0.0 ( 0 )
 نشر من قبل Yuri Pashkin
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have suspended an Al based single-electron transistor whose island can resonate freely between the source and drain leads forming the clamps. In addition to the regular side gate, a bottom gate with a larger capacitance to the SET island is placed underneath to increase the SET coupling to mechanical motion. The device can be considered as a doubly clamped Al beam that can transduce mechanical vibrations into variations of the SET current. Our simulations based on the orthodox model, with the SET parameters estimated from the experiment, reproduce the observed transport characteristics in detail.

قيم البحث

اقرأ أيضاً

Single dopants in semiconductor nanostructures have been studied in great details recently as they are good candidates for quantum bits, provided they are coupled to a detector. Here we report coupling of a single As donor atom to a single-electron t ransistor (SET) in a silicon nanowire field-effect transistor. Both capacitive and tunnel coupling are achieved, the latter resulting in a dramatic increase of the conductance through the SET, by up to one order of magnitude. The experimental results are well explained by the rate equations theory developed in parallel with the experiment.
80 - A.D. Armour 2003
We analyze the dynamics of a nano-mechanical resonator coupled to a single-electron transistor (SET) in the regime where the resonator behaves classically. A master equation is derived describing the dynamics of the coupled system which is then used to obtain equations of motion for the average charge state of the SET and the average position of the resonator. We show that the action of the SET on the resonator is very similar to that of a thermal bath, as it leads to a steady-state probability-distribution for the resonator which can be described by mean values of the resonator position, a renormalized frequency, an effective temperature and an intrinsic damping constant. Including the effects of extrinsic damping and finite temperature, we find that there remain experimentally accessible regimes where the intrinsic damping of the resonator still dominates its behavior. We also obtain the average current through the SET as a function of the coupling to the resonator.
We report on combined measurements of heat and charge transport through a single-electron transistor. The device acts as a heat switch actuated by the voltage applied on the gate. The Wiedemann-Franz law for the ratio of heat and charge conductances is found to be systematically violated away from the charge degeneracy points. The observed deviation agrees well with the theoretical expectation. With large temperature drop between the source and drain, the heat current away from degeneracy deviates from the standard quadratic dependence in the two temperatures.
104 - M. Turek , J. Siewert , K. Richter 2005
We present a linear-response theory for the thermopower of a single-electron transistor consisting of a superconducting island weakly coupled to two normal-conducting leads (NSN SET). The thermopower shows oscillations with the same periodicity as th e conductance and is rather sensitive to the size of the superconducting gap. In particular, the previously studied sawtooth-like shape of the thermopower for a normal-conducting single-electron device is qualitatively changed even for small gap energies.
A new method to fabricate non-superconducting mesoscopic tunnel junctions by oxidation of Ti is presented. The fabrication process uses conventional electron beam lithography and shadow deposition through an organic resist mask. Superconductivity in Ti is suppressed by performing the deposition under a suitable background pressure. We demonstrate the method by making a single electron transistor which operated at $T < 0.4$ K and had a moderate charge noise of $2.5 times 10^{-3}$ e/$sqrt{mathrm{Hz}}$ at 10 Hz. Based on nonlinearities in the current-voltage characteristics at higher voltages, we deduce the oxide barrier height of approximately 110 mV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا