ﻻ يوجد ملخص باللغة العربية
We revisit the fundamental problem of the splitting instability of a doubly quantized vortex in uniform single-component superfluids at zero temperature. We analyze the system-size dependence of the excitation frequency of a doubly quantized vortex through large-scale simulations of the Bogoliubov--de Gennes equation, and find that the system remains dynamically unstable even in the infinite-system-size limit. Perturbation and semi-classical theories reveal that the splitting instability radiates a damped oscillatory phonon as an opposite counterpart of a quasi-normal mode.
The splitting instability of a doubly-quantized vortex in the BEC-BCS crossover of a superfluid Fermi gas is investigated by means of a low-energy effective field theory. Our linear stability analysis and non-equilibrium numerical simulations reveal
We study the dynamics of a doubly quantized vortex (DQV), created by releasing a ring-shaped Bose-Einstein condensate with quantized circulation into harmonic potential traps. It is shown that a DQV can be generated and exists stably in the middle of
We propose to induce topological defects in particle-hole symmetric superfluids, with the prime example of the BCS state of ultracold atoms and detect their time evolution and decay. We demonstrate that the time evolution is qualitatively distinct fo
Soliton hydrodynamics is an appealing tool to describe strong turbulence in low-dimensional systems. Strong turbulence in quasi-one dimensional spuerfluids, such as Bose-Einstein condensates, involves the dynamics of dark solitons and, therefore, the
The domain-area distribution in the phase transition dynamics of ${rm Z}_2$ symmetry breaking is studied theoretically and numerically for segregating binary Bose--Einstein condensates in quasi-two-dimensional systems. Due to the dynamic scaling law