ﻻ يوجد ملخص باللغة العربية
The splitting instability of a doubly-quantized vortex in the BEC-BCS crossover of a superfluid Fermi gas is investigated by means of a low-energy effective field theory. Our linear stability analysis and non-equilibrium numerical simulations reveal that the character of the instability drastically changes across the crossover. In the BEC-limit, the splitting of the vortex into two singly-quantized vortices occurs through the emission of phonons, while such an emission is completely absent in the BCS-limit. In the crossover-regime, the instability and phonon emission are enhanced, and the lifetime of a doubly-quantized vortex becomes minimal. The emitted phonon is amplified due to the rotational superradiance and can be observed as a spiraling pattern in the superfluid. We also investigate the influence of temperature, population imbalance, and three-dimensional effects.
In a recent article, Yefsah et al. [Nature 499, 426 (2013)] report the observation of an unusual excitation in an elongated harmonically trapped unitary Fermi gas. After phase imprinting a domain wall, they observe oscillations almost an order of mag
We study the dynamics of a doubly quantized vortex (DQV), created by releasing a ring-shaped Bose-Einstein condensate with quantized circulation into harmonic potential traps. It is shown that a DQV can be generated and exists stably in the middle of
Dark solitons in superfluid Bose gases decay through the snake instability mechanism, unless they are strongly confined. Recent experiments in superfluid Fermi gases have also interpreted soliton decay via this mechanism. However, we show using both
We revisit the fundamental problem of the splitting instability of a doubly quantized vortex in uniform single-component superfluids at zero temperature. We analyze the system-size dependence of the excitation frequency of a doubly quantized vortex t
We use the time-dependent Bogoliubov de Gennes equations to study dark solitons in three-dimensional spin-imbalanced superfluid Fermi gases. We explore how the shape and dynamics of dark solitons are altered by the presence of excess unpaired spins w