ترغب بنشر مسار تعليمي؟ اضغط هنا

Splitting instability of a doubly quantized vortex in superfluid Fermi gases

126   0   0.0 ( 0 )
 نشر من قبل Wout Van Alphen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The splitting instability of a doubly-quantized vortex in the BEC-BCS crossover of a superfluid Fermi gas is investigated by means of a low-energy effective field theory. Our linear stability analysis and non-equilibrium numerical simulations reveal that the character of the instability drastically changes across the crossover. In the BEC-limit, the splitting of the vortex into two singly-quantized vortices occurs through the emission of phonons, while such an emission is completely absent in the BCS-limit. In the crossover-regime, the instability and phonon emission are enhanced, and the lifetime of a doubly-quantized vortex becomes minimal. The emitted phonon is amplified due to the rotational superradiance and can be observed as a spiraling pattern in the superfluid. We also investigate the influence of temperature, population imbalance, and three-dimensional effects.



قيم البحث

اقرأ أيضاً

In a recent article, Yefsah et al. [Nature 499, 426 (2013)] report the observation of an unusual excitation in an elongated harmonically trapped unitary Fermi gas. After phase imprinting a domain wall, they observe oscillations almost an order of mag nitude slower than predicted by any theory of domain walls which they interpret as a heavy soliton of inertial mass some 200 times larger than the free fermion mass or 50 times larger than expected for a domain wall. We present compelling evidence that this soliton is instead a quantized vortex ring by showing that the main aspects of the experiment can be naturally explained within the framework of time-dependent superfluid DFT.
77 - Bo Xiong , Tao Yang , Yu-Ju Lin 2019
We study the dynamics of a doubly quantized vortex (DQV), created by releasing a ring-shaped Bose-Einstein condensate with quantized circulation into harmonic potential traps. It is shown that a DQV can be generated and exists stably in the middle of the ring-shaped condensate with the initial circulation $s = 2$ after released into the rotationally symmetric trap potential. For an asymmetric trap with a small degree of anisotropy the DQV initially splits into two singly quantized vortices and revives again but eventually evolves into two unit vortices due to the dynamic instability. For the degree of anisotropy above a critical value, the DQV is extremely unstably and decays rapidly into two singlet vortices. The geometry-dependent lifetime of the DQV and vortex-induced excitations are also discussed intensively.
Dark solitons in superfluid Bose gases decay through the snake instability mechanism, unless they are strongly confined. Recent experiments in superfluid Fermi gases have also interpreted soliton decay via this mechanism. However, we show using both an effective field numerical simulation and a perturbative analysis that there is a qualitative difference between soliton decay in the BEC- and BCS-regimes. On the BEC-side of the interaction domain, the characteristic snaking deformations are induced by fluctuations of the amplitude of the order parameter, while on the BCS-side, fluctuations of the phase destroy the soliton core through the formation of local Josephson currents. The latter mechanism is qualitatively different from the snaking instability and this difference should be experimentally detectable.
We revisit the fundamental problem of the splitting instability of a doubly quantized vortex in uniform single-component superfluids at zero temperature. We analyze the system-size dependence of the excitation frequency of a doubly quantized vortex t hrough large-scale simulations of the Bogoliubov--de Gennes equation, and find that the system remains dynamically unstable even in the infinite-system-size limit. Perturbation and semi-classical theories reveal that the splitting instability radiates a damped oscillatory phonon as an opposite counterpart of a quasi-normal mode.
We use the time-dependent Bogoliubov de Gennes equations to study dark solitons in three-dimensional spin-imbalanced superfluid Fermi gases. We explore how the shape and dynamics of dark solitons are altered by the presence of excess unpaired spins w hich fill their low-density core. The unpaired particles broaden the solitons and suppress the transverse snake instability. We discuss ways of observing these phenomena in cold atom experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا