ﻻ يوجد ملخص باللغة العربية
The residual amplitude modulation ($mathrm{RAM}$) is the undesired, non-zero amplitude modulation that usually occurs when a phase modulation based on the electro-optic effect is imprinted on a laser beam. In this work, we show that electro-optic modulators (EOMs) that are used to generate the sidebands on the laser beam also generate a $mathrm{RAM}$ in the optical setup. This result contradicts standard textbooks, which assume the amplitude remains unchanged in the process and should be considered as a fundamental $mathrm{RAM}$ ($mathrm{RAM_{F}}$) for these devices. We present a classical model for the propagation of an infrared laser with frequency $omega_{0}$ in a wedge-shaped crystal and an EOM with an RF modulating signal of frequency $Omega$. Since ${Omega}ll omega_{0}$, we solve Maxwells equations in a time-varying media via a WKB approximation and we write the electromagnetic fields in terms of quasi-plane waves. From the emerging fields of the setup, we compute the associated $mathrm{RAM_{F}}$ and show that it depends on the phase-modulation depth $m$ and the quotient $left(frac{Omega}{omega_{0}}right)$. The $mathrm{RAM_{F}}$ values obtained for the EOMs used in gravitational wave detectors are presented. Finally, the cancellation of $mathrm{RAM_{F}}$ is analyzed.
Modern communication networks require high performance and scalable electro-optic modulators that convert electrical signals to optical signals at high speed. Existing lithium niobate modulators have excellent performance but are bulky and prohibitiv
In this paper, three different materials Si, ITO and graphene; and three different types of mode structures bulk, slot and hybrid; based on their electrooptical and electro absorptive aspects in performance are analyzed. The study focuses on three ma
Electro-optic modulators from non-linear $chi^{(2)}$ materials are essential for sensing, metrology and telecommunications because they link the optical domain with the microwave domain. At present, most geometries are suited for fiber applications.
The quantum bits (qubits) on which superconducting quantum computers are based have energy scales corresponding to photons with GHz frequencies. The energy of photons in the gigahertz domain is too low to allow transmission through the noisy room-tem
We phase-coherently measure the frequency of continuous-wave (CW) laser light by use of optical-phase modulation and f-2f nonlinear interferometry. Periodic electro-optic modulation (EOM) transforms the CW laser into a continuous train of picosecond