ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-referencing a continuous-wave laser with electro-optic modulation

287   0   0.0 ( 0 )
 نشر من قبل Scott Papp
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We phase-coherently measure the frequency of continuous-wave (CW) laser light by use of optical-phase modulation and f-2f nonlinear interferometry. Periodic electro-optic modulation (EOM) transforms the CW laser into a continuous train of picosecond optical pulses. Subsequent nonlinear-fiber broadening of this EOM frequency comb produces a supercontinuum with 160 THz of bandwidth. A critical intermediate step is optical filtering of the EOM comb to reduce electronic-noise-induced decoherence of the supercontinuum. Applying f-2f self-referencing with the supercontinuum yields the carrier-envelope offset frequency of the EOM comb, which is precisely the difference of the CW laser frequency and an exact integer multiple of the EOM pulse repetition rate. Here we demonstrate absolute optical frequency metrology and synthesis applications of the self-referenced CW laser with <5E-14 fractional accuracy and stability.



قيم البحث

اقرأ أيضاً

124 - Marco Ravaro 2013
We demonstrate a coherent imaging system based on a terahertz (THz) frequency quantum cascade laser (QCL) phase-locked to a near-infrared fs-laser comb. The phase locking enables coherent electro-optic sampling of the continuous-wave radiation emitte d by the QCL through the generation of a heterodyne beat-note signal. We use this beat-note signal to demonstrate raster scan coherent imaging using a QCL emitting at 2.5 THz. At this frequency the detection noise floor of our system is of 3 pW/Hz and the long-term phase stability is <3 degrees/h, limited by the mechanical stability of the apparatus.
We propose a new type of bistable device for silicon photonics, using the self-electro-optic effect within an optical cavity. Since the bistability does not depend on the intrinsic optical nonlinearity of the material, but is instead engineered by me ans of an optoelectronic feedback, it appears at low optical powers. This bistable device satisfies all the basic criteria required in an optical switch to build a scalable digital optical computing system.
Two extended cavity laser diodes are phase-locked, thanks to an intra-cavity electro-optical modulator. The phase-locked loop bandwidth is on the order of 10 MHz, which is about twice larger than when the feedback correction is applied on the laser c urrent. The phase noise reaches -120 dBrad$^2$/Hz at 10 kHz. This new scheme reduces the residual laser phase noise, which constitutes one of the dominant contributions in the sensitivity limit of atom interferometers using two-photon transitions.
We demonstrate a high-contrast electro-optic modulation of a photonic crystal nanocavity integrated with an electrically gated monolayer graphene. A high quality (Q) factor air-slot nanocavity design is employed for high overlap between the optical f ield and graphene sheet. Tuning of graphenes Fermi level up to 0.8 eV enables efficient control of its complex dielectric constant, which allows modulation of the cavity reflection in excess of 10 dB for a swing voltage of only 1.5 V. We also observe a controllable resonance wavelength shift close to 2 nm around a wavelength of 1570 nm and a Q factor modulation in excess of three. These observations allow cavity-enhanced measurements of the graphene complex dielectric constant under different chemical potentials, in agreement with a theoretical model of the graphene dielectric constant under gating. This graphene-based nanocavity modulation demonstrates the feasibility of high-contrast, low-power frequency-selective electro-optic nanocavity modulators in graphene-integrated silicon photonic chips.
High speed optical telecommunication is enabled by wavelength division multiplexing, whereby hundreds of individually stabilized lasers encode the information within a single mode optical fiber. In the seek for larger bandwidth the optical power sent into the fiber is limited by optical non-linearities within the fiber and energy consumption of the light sources starts to become a significant cost factor. Optical frequency combs have been suggested to remedy this problem by generating multiple laser lines within a monolithic device, their current stability and coherence lets them operate only in small parameter ranges. Here we show that a broadband frequency comb realized through the electro-optic effect within a high quality whispering gallery mode resonator can operate at low microwave and optical powers. Contrary to the usual third order Kerr non-linear optical frequency combs we rely on the second order non-linear effect which is much more efficient. Our result uses a fixed microwave signal which is mixed with an optical pump signal to generate a coherent frequency comb with a precisely determined carrier separation. The resonant enhancement enables us to operate with microwave powers three order magnitude smaller than in commercially available devices. We can expect the implementation into the next generation long distance telecommunication which relies on coherent emission and detection schemes to allow for operation with higher optical powers and at reduced cost.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا