ﻻ يوجد ملخص باللغة العربية
Although interstellar grains are known to be aspherical, their actual shapes remain poorly constrained. We assess whether three continuous distributions of ellipsoidal shapes from the literature are suitable for describing the shapes of interstellar grains. Randomly-selected shapes from each distribution are shown as illustrations. The often-used Bohren-Huffman CDE includes a very large fraction of extreme shapes: fully 10% of random draws have axial ratio $a_3/a_1 > 19.7$, and 5% have $a_3/a_1 > 33$. The CDE2 distribution includes a much smaller fraction of extreme shapes, and appears to be more realistic. For each of the three CDEs considered, we derive shape-averaged cross sections for extinction and polarization in the Rayleigh limit. Finally, we describe a method for synthesizing a dielectric function for an assumed shape or shape distribution if the actual absorption cross sections per grain volume in the Rayleigh limit are known from observations. This synthetic dielectric function predicts the wavelength dependence of polarization, which can then be compared to observations to constrain the grain shape.
We present a new method for using the observed starlight polarization and polarized submm emission to constrain the shapes and porosities of interstellar grains. We present the modified picket fence approximation (MPFA), and verify that it is suffici
Interstellar dust plays a central role in shaping the detailed structure of the interstellar medium, thus strongly influencing star formation and galaxy evolution. Dust extinction provides one of the main pillars of our understanding of interstellar
The degree to which interstellar grains align with respect to the interstellar magnetic field depends on disaligning as well as aligning mechanisms. For decades, it was assumed that disalignment was due primarily to the random angular impulses a grai
The recent spectacular progress in the experimental and theoretical understanding of graphene, the basic constituent of graphite, is applied here to compute, from first principles, the UV extinction of nano-particles made of stacks of graphene layers
Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-ra