ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Shapes of Interstellar Grains: Modeling Extinction and Polarization by Spheroids and Continuous Distributions of Ellipsoids

72   0   0.0 ( 0 )
 نشر من قبل Bruce T. Draine
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. T. Draine




اسأل ChatGPT حول البحث

Although interstellar grains are known to be aspherical, their actual shapes remain poorly constrained. We assess whether three continuous distributions of ellipsoidal shapes from the literature are suitable for describing the shapes of interstellar grains. Randomly-selected shapes from each distribution are shown as illustrations. The often-used Bohren-Huffman CDE includes a very large fraction of extreme shapes: fully 10% of random draws have axial ratio $a_3/a_1 > 19.7$, and 5% have $a_3/a_1 > 33$. The CDE2 distribution includes a much smaller fraction of extreme shapes, and appears to be more realistic. For each of the three CDEs considered, we derive shape-averaged cross sections for extinction and polarization in the Rayleigh limit. Finally, we describe a method for synthesizing a dielectric function for an assumed shape or shape distribution if the actual absorption cross sections per grain volume in the Rayleigh limit are known from observations. This synthetic dielectric function predicts the wavelength dependence of polarization, which can then be compared to observations to constrain the grain shape.



قيم البحث

اقرأ أيضاً

We present a new method for using the observed starlight polarization and polarized submm emission to constrain the shapes and porosities of interstellar grains. We present the modified picket fence approximation (MPFA), and verify that it is suffici ently accurate for modeling starlight polarization. We introduce the starlight polarization integral $Pi_{rm obs}$ as a measure of overall strength of the observed polarization of starlight, and the starlight polarization efficiency integral $Phi$ to characterize the effectiveness of different grain types for producing polarization of starlight. The starlight polarization integral $Pi_{rm obs}$ determines the mass-weighted alignment $langle f_{rm align}rangle$ of the grains. Approximating the aligned grains in the interstellar medium as spheroids, we use $Pi_{rm obs}/Phi$ to show that the observed starlight polarization constrains the grains to have a minimum degree of asphericity. For porosity ${cal P}=0$, the minimum axial ratio is $sim$1.4 for oblate spheroids, or $sim$1.8 for prolate spheroids. If the grains are porous, more extreme axial ratios are required. The same grains that produce the starlight polarization are able to provide the observed polarized emission at submm wavelengths, but with further limits on shape and porosity. Porosities ${cal P}>0.75$ are ruled out. If interstellar grains can be approximated by astrodust spheroids, we predict the ratio of 10$mu{rm m}$ polarization to starlight polarization $p_V$: $p(10mu{rm m})/p_V=0.222pm0.026$. For Cyg OB2-12 we predict $p(10mu{rm m})=(2.1pm0.3)%$, which should be observable.
Interstellar dust plays a central role in shaping the detailed structure of the interstellar medium, thus strongly influencing star formation and galaxy evolution. Dust extinction provides one of the main pillars of our understanding of interstellar dust while also often being one of the limiting factors when interpreting observations of distant objects, including resolved and unresolved galaxies. The ultraviolet (UV) and mid-infrared (MIR) wavelength regimes exhibit features of the main components of dust, carbonaceous and silicate materials, and therefore provide the most fruitful avenue for detailed extinction curve studies. Our current picture of extinction curves is strongly biased to nearby regions in the Milky Way. The small number of UV extinction curves measured in the Local Group (mainly Magellanic Clouds) clearly indicates that the range of dust properties is significantly broader than those inferred from the UV extinction characteristics of local regions of the Milky Way. Obtaining statistically significant samples of UV and MIR extinction measurements for all the dusty Local Group galaxies will provide, for the first time, a basis for understanding dust grains over a wide range of environments. Obtaining such observations requires sensitive medium-band UV, blue-optical, and mid-IR imaging and followup R ~ 1000 spectroscopy of thousands of sources. Such a census will revolutionize our understanding of the dependence of dust properties on local environment providing both an empirical description of the effects of dust on observations as well as strong constraints on dust grain and evolution models.
The degree to which interstellar grains align with respect to the interstellar magnetic field depends on disaligning as well as aligning mechanisms. For decades, it was assumed that disalignment was due primarily to the random angular impulses a grai n receives when colliding with gas-phase atoms. Recently, a new disalignment mechanism has been considered, which may be very potent for a grain that has a time-varying electric dipole moment and drifts across the magnetic field. We provide quantitative estimates of the disalignment times for silicate grains with size > approximately 0.1 micron. These appear to be shorter than the time-scale for alignment by radiative torques, unless the grains contain superparamagnetic inclusions.
The recent spectacular progress in the experimental and theoretical understanding of graphene, the basic constituent of graphite, is applied here to compute, from first principles, the UV extinction of nano-particles made of stacks of graphene layers . The theory also covers cases where graphene is affected by structural, chemical or orientation disorder, each disorder type being quantitatively defined by a single parameter. The extinction bumps carried by such model materials are found to have positions and widths falling in the same range as the known astronomical 2175 AA features: as the disorder parameter increases, the bump width increases from 0.85 to 2.5 $mu$m$^{-1}$, while its peak position shifts from 4.65 to 4.75 $mu$m$^{-1}$. Moderate degrees of disorder are enough to cover the range of widths of the vast majority of observed bumps (0.75 to 1.3 $mu$m$^{-1}$). Higher degrees account for outliers, also observed in the sky. The introduction of structural or chemical disorder amounts to changing the initial $sp^{2}$ bondings into $sp^{3}$ or $sp^{1}$, so the optical properties of the model material become similar to those of the more or less amorphous carbon-rich materials studied in the laboratory: a-C, a-C:H, HAC, ACH, coals etc. The present treatment thus bridges gaps between physically different model materials.
Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-ra ys for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. An open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), is presented that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا