ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of structural and chemical disorders on the visible/UV spectra of carbonaceous interstellar grains

99   0   0.0 ( 0 )
 نشر من قبل Renaud Papoular
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent spectacular progress in the experimental and theoretical understanding of graphene, the basic constituent of graphite, is applied here to compute, from first principles, the UV extinction of nano-particles made of stacks of graphene layers. The theory also covers cases where graphene is affected by structural, chemical or orientation disorder, each disorder type being quantitatively defined by a single parameter. The extinction bumps carried by such model materials are found to have positions and widths falling in the same range as the known astronomical 2175 AA features: as the disorder parameter increases, the bump width increases from 0.85 to 2.5 $mu$m$^{-1}$, while its peak position shifts from 4.65 to 4.75 $mu$m$^{-1}$. Moderate degrees of disorder are enough to cover the range of widths of the vast majority of observed bumps (0.75 to 1.3 $mu$m$^{-1}$). Higher degrees account for outliers, also observed in the sky. The introduction of structural or chemical disorder amounts to changing the initial $sp^{2}$ bondings into $sp^{3}$ or $sp^{1}$, so the optical properties of the model material become similar to those of the more or less amorphous carbon-rich materials studied in the laboratory: a-C, a-C:H, HAC, ACH, coals etc. The present treatment thus bridges gaps between physically different model materials.



قيم البحث

اقرأ أيضاً

An unidentified infrared emission (UIE) feature at 6.0 $mu$m is detected in a number of astronomical sources showing the UIE bands. In contrast to the previous suggestion that this band is due to C=O vibrational modes, we suggest that the 6.0 $mu$m f eature arises from olefinic double-bond functional groups. These groups are likely to be attached to aromatic rings which are responsible for the major UIE bands. The possibility that the formation of these functional groups is related to the hydrogenation process is discussed.
Carbonaceous chondrite meteorites are so far the only available samples representing carbon-rich asteroids and in order to allow future comparison with samples returned by missions such as Hayabusa 2 and OSIRIS-Rex, is important to understand their p hysical properties. Future characterization of asteroid primitive classes, some of them targeted by sample-return missions, requires a better understanding of their mineralogy, the consequences of the exposure to space weathering, and how both affect the reflectance behavior of these objects. In this paper, the reflectance spectra of two chemically-related carbonaceous chondrites groups, precisely the Vigrano (CVs) and Karoonda (CKs), are measured and compared. The available sample suite includes polished sections exhibiting different petrologic types: from 3 (very low degree of thermal metamorphism) to 5 (high degree of thermal metamorphism). We found that the reflective properties and the comparison with the Cg asteroid reflectance class point toward a common chondritic reservoir from which the CV-CK asteroids collisionally evolved. In that scenario the CV and CK chondrites could be originated from 221 Eos asteroid family, but because of its collisional disruption, both chondrite groups evolved separately, experiencing different stages of thermal metamorphism, annealing and space weathering.
Hydride molecules lie at the base of interstellar chemistry, but the synthesis of sulfuretted hydrides is poorly understood. Motivated by new observations of the Orion Bar PDR - 1 resolution ALMA images of SH+; IRAM 30m detections of H2S, H2S34, and H2S33; H3S+ (upper limits); and SOFIA observations of SH - we perform a systematic study of the chemistry of S-bearing hydrides. We determine their column densities using coupled excitation, radiative transfer as well as chemical formation and destruction models. We revise some of the key gas-phase reactions that lead to their chemical synthesis. This includes ab initio quantum calculations of the vibrational-state-dependent reactions SH+ + H2 <-> H2S+ + H and S + H2 <-> SH + H. We find that reactions of UV-pumped H2 (v>1) with S+ explain the presence of SH+ in a high thermal-pressure gas component, P_th~10^8 cm^-3 K, close to the H2 dissociation front. However, subsequent hydrogen abstraction reactions of SH+, H2S+, and S with vibrationally excited H2, fail to ultimately explain the observed H2S column density (~2.5x10^14 cm^-2, with an ortho-to-para ratio of 2.9+/-0.3). To overcome these bottlenecks, we build PDR models that include a simple network of grain surface reactions leading to the formation of solid H2S (s-H2S). The higher adsorption binding energies of S and SH suggested by recent studies imply that S atoms adsorb on grains (and form s-H2S) at warmer dust temperatures and closer to the UV-illuminated edges of molecular clouds. Photodesorption and, to a lesser extent, chemical desorption, produce roughly the same H2S column density (a few 10^14 cm-^2) and abundance peak (a few 10^-8) nearly independently of n_H and G_0. This agrees with the observed H2S column density in the Orion Bar as well as at the edges of dark clouds without invoking substantial depletion of elemental sulfur abundances.
Interstellar grains are known to be important actors in the formation of interstellar molecules such as H$_2$, water, ammonia, and methanol. It has been suggested that the so-called interstellar complex organic molecules (iCOMs) are also formed on th e interstellar grain icy surfaces by the combination of radicals via reactions assumed to have an efficiency equal to unity. In this work, we aim to investigate the robustness or weakness of this assumption by considering the case of acetaldehyde (CH$_3$CHO) as a starting study case. In the literature, it has been postulated that acetaldehyde is formed on the icy surfaces via the combination of HCO and CH$_3$. Here we report new theoretical computations on the efficiency of its formation. To this end, we coupled quantum chemical calculations of the energetics and kinetics of the reaction CH$_3$ + HCO, which can lead to the formation of CH$_3$CHO or CO + CH$_4$. Specifically, we combined reaction kinetics computed with the Rice-Ramsperger-Kassel-Marcus (RRKM) theory (tunneling included) method with diffusion and desorption competitive channels. We provide the results of our computations in the format used by astrochemical models to facilitate their exploitation. Our new computations indicate that the efficiency of acetaldehyde formation on the icy surfaces is a complex function of the temperature and, more importantly, of the assumed diffusion over binding energy ratio $f$ of the CH$_3$ radical. If the ratio $f$ is $geq$0.4, the efficiency is equal to unity in the range where the reaction can occur, namely between 12 and 30 K. However, if $f$ is smaller, the efficiency dramatically crashes: with $f$=0.3, it is at most 0.01. In addition, the formation of acetaldehyde is always in competition with that of CO + CH$_4$.
Context. The formation of water on the dust grains in the interstellar medium may proceed with hydrogen peroxide (H2O2) as an intermediate. Recently gas-phase H2O2 has been detected in {rho} Oph A with an abundance of ~1E-10 relative to H2. Aims. W e aim to reproduce the observed abundance of H2O2 and other species detected in {rho} Oph A quantitatively. Methods. We make use of a chemical network which includes gas phase reactions as well as processes on the grains; desorption from the grain surface through chemical reaction is also included. We run the model for a range of physical parameters. Results. The abundance of H2O2 can be best reproduced at ~6E5 yr, which is close to the dynamical age of {rho} Oph A. The abundances of other species such as H2CO, CH3OH, and O2 can be reasonably reproduced also at this time. In the early time the gas-phase abundance of H2O2 can be much higher than the current detected value. We predict a gas phase abundance of O2H at the same order of magnitude as H2O2, and an abundance of the order 1E-8 for gas phase water in {rho} Oph A. A few other species of interest are also discussed. Conclusions. We demonstrate that H2O2 can be produced on the dust grains and released into the gas phase through non-thermal desorption via surface exothermic reactions. The H2O2 molecule on the grain is an important intermediate in the formation of water. The fact that H2O2 is over-produced in the gas phase for a range of physical conditions suggests that its destruction channel in the current gas phase network may be incomplete.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا