ﻻ يوجد ملخص باللغة العربية
The recent spectacular progress in the experimental and theoretical understanding of graphene, the basic constituent of graphite, is applied here to compute, from first principles, the UV extinction of nano-particles made of stacks of graphene layers. The theory also covers cases where graphene is affected by structural, chemical or orientation disorder, each disorder type being quantitatively defined by a single parameter. The extinction bumps carried by such model materials are found to have positions and widths falling in the same range as the known astronomical 2175 AA features: as the disorder parameter increases, the bump width increases from 0.85 to 2.5 $mu$m$^{-1}$, while its peak position shifts from 4.65 to 4.75 $mu$m$^{-1}$. Moderate degrees of disorder are enough to cover the range of widths of the vast majority of observed bumps (0.75 to 1.3 $mu$m$^{-1}$). Higher degrees account for outliers, also observed in the sky. The introduction of structural or chemical disorder amounts to changing the initial $sp^{2}$ bondings into $sp^{3}$ or $sp^{1}$, so the optical properties of the model material become similar to those of the more or less amorphous carbon-rich materials studied in the laboratory: a-C, a-C:H, HAC, ACH, coals etc. The present treatment thus bridges gaps between physically different model materials.
An unidentified infrared emission (UIE) feature at 6.0 $mu$m is detected in a number of astronomical sources showing the UIE bands. In contrast to the previous suggestion that this band is due to C=O vibrational modes, we suggest that the 6.0 $mu$m f
Carbonaceous chondrite meteorites are so far the only available samples representing carbon-rich asteroids and in order to allow future comparison with samples returned by missions such as Hayabusa 2 and OSIRIS-Rex, is important to understand their p
Hydride molecules lie at the base of interstellar chemistry, but the synthesis of sulfuretted hydrides is poorly understood. Motivated by new observations of the Orion Bar PDR - 1 resolution ALMA images of SH+; IRAM 30m detections of H2S, H2S34, and
Interstellar grains are known to be important actors in the formation of interstellar molecules such as H$_2$, water, ammonia, and methanol. It has been suggested that the so-called interstellar complex organic molecules (iCOMs) are also formed on th
Context. The formation of water on the dust grains in the interstellar medium may proceed with hydrogen peroxide (H2O2) as an intermediate. Recently gas-phase H2O2 has been detected in {rho} Oph A with an abundance of ~1E-10 relative to H2. Aims. W