ترغب بنشر مسار تعليمي؟ اضغط هنا

RI/MOM and RI/SMOM renormalization of overlap quark bilinears on domain wall fermion configurations

74   0   0.0 ( 0 )
 نشر من قبل Zhaofeng Liu
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Renormalization constants (RCs) of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations are calculated by using the RI/MOM and RI/SMOM schemes. The scale independent RC for the axial vector current is computed by using a Ward identity. Then the RCs for the quark field and the vector, tensor, scalar and pseudoscalar operators are calculated in both the RI/MOM and RI/SMOM schemes. The RCs are converted to the $overline{rm MS}$ scheme and we compare the numerical results from using the two intermediate schemes. The lattice size is $48^3times96$ and the inverse spacing $1/a = 1.730(4) {rm~GeV}$.



قيم البحث

اقرأ أيضاً

We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. Both overlap and domain wall fermions have chiral symmetry on the lattice. The scale independent renormalization constant for t he local axial vector current is computed using a Ward Identity. The renormalization constants for the scalar, pseudoscalar and vector current are calculated in the RI-MOM scheme. Results in the MS-bar scheme are obtained by using perturbative conversion ratios. The analysis uses in total six ensembles with lattice sizes 24^3x64 and 32^3x64.
We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. This setup is being used by the chiQCD collaboration in calculations of physical quantities such as strangeness in the nucleon and the strange and charm quark masses. The scale independent renormalization constant for the axial vector current is computed using the Ward Identity. The renormalization constants for scalar, pseudoscalar and vector current are calculated in the RI-MOM scheme. Results in the MS-bar scheme are also given. The step scaling function of quark masses in the RI-MOM scheme is computed as well. The analysis uses, in total, six different ensembles of three sea quarks each on two lattices with sizes 24^3x64 and 32^3x64 at spacings a=(1.73 GeV)^{-1} and (2.28 GeV)^{-1}, respectively.
The determination of renormalization factors is of crucial importance in lattice QCD. They relate the observables obtained on the lattice to their measured counterparts in the continuum in a suitable renormalization scheme. Therefore, they have to be computed as precisely as possible. A widely used approach is the nonperturbative Rome-Southampton method. It requires, however, a careful treatment of lattice artifacts. In this paper we investigate a method to suppress these artifacts by subtracting one-loop contributions to renormalization factors calculated in lattice perturbation theory. We compare results obtained from a complete one-loop subtraction with those calculated for a subtraction of contributions proportional to the square of the lattice spacing.
We analyze the lattice spacing dependence for the pion unpolarized matrix element of a quark bilinear operator with Wilson link (quasi-PDF operator) in the rest frame, using 13 lattice spacings ranging from 0.032 fm to 0.121 fm. We compare results fo r three different fermion actions with or without good chiral symmetry on dynamical gauge ensembles from three collaborations. This investigation is motivated by the fact that the gauge link generates an $1/a$ divergence, the cancelation of which in many ratios can be numerically tricky. Indeed, our results show that this cancelation deteriorates with decreasing lattice spacing, and that the RI/MOM method leaves a linearly divergent residue for quasi-PDFs. We also show that in the Landau gauge the interaction between the Wilson link and the external state results in a linear divergence which depends on the discretized fermion action.
363 - N. Mathur , A. Alexandru , Y. Chen 2010
We report meson spectra obtained by using valence overlap fermion propagators generated on a background of 2+1 flavor domain wall fermion gauge configurations on 16^3 X 32, 24^3 X 64 and 32^3 X 64 lattices. We use many-to-all correlators with Z3 grid source and low eigenmode substitution which is efficient in reducing errors for the hadron correlators. The preliminary results on meson spectrum, a0 correlators, and charmonium hyperfine splitting for three sea quark masses are reported here.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا