ﻻ يوجد ملخص باللغة العربية
The determination of renormalization factors is of crucial importance in lattice QCD. They relate the observables obtained on the lattice to their measured counterparts in the continuum in a suitable renormalization scheme. Therefore, they have to be computed as precisely as possible. A widely used approach is the nonperturbative Rome-Southampton method. It requires, however, a careful treatment of lattice artifacts. In this paper we investigate a method to suppress these artifacts by subtracting one-loop contributions to renormalization factors calculated in lattice perturbation theory. We compare results obtained from a complete one-loop subtraction with those calculated for a subtraction of contributions proportional to the square of the lattice spacing.
Renormalization factors relate the observables obtained on the lattice to their measured counterparts in the continuum in a suitable renormalization scheme. They have to be computed very precisely which requires a careful treatment of lattice artifac
We analyze the lattice spacing dependence for the pion unpolarized matrix element of a quark bilinear operator with Wilson link (quasi-PDF operator) in the rest frame, using 13 lattice spacings ranging from 0.032 fm to 0.121 fm. We compare results fo
Renormalization constants (RCs) of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations are calculated by using the RI/MOM and RI/SMOM schemes. The scale independent RC for the axial vector current is computed by using a
We impose the axial and vector Ward identities on local fermion bilinear operators in the Sheikholesalami-Wohlert discretization of fermions. From this we obtain all the coefficients needed to improve the theory at O(a), as well as the scale and sche
The determination of renormalization factors is of crucial importance. They relate the observables obtained on finite, discrete lattices to their measured counterparts in the continuum in a suitable renormalization scheme. Therefore, they have to be