ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-perturbative renormalization of overlap quark bilinears on 2+1-flavor domain wall fermion configurations

205   0   0.0 ( 0 )
 نشر من قبل Zhaofeng Liu
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. This setup is being used by the chiQCD collaboration in calculations of physical quantities such as strangeness in the nucleon and the strange and charm quark masses. The scale independent renormalization constant for the axial vector current is computed using the Ward Identity. The renormalization constants for scalar, pseudoscalar and vector current are calculated in the RI-MOM scheme. Results in the MS-bar scheme are also given. The step scaling function of quark masses in the RI-MOM scheme is computed as well. The analysis uses, in total, six different ensembles of three sea quarks each on two lattices with sizes 24^3x64 and 32^3x64 at spacings a=(1.73 GeV)^{-1} and (2.28 GeV)^{-1}, respectively.

قيم البحث

اقرأ أيضاً

We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. Both overlap and domain wall fermions have chiral symmetry on the lattice. The scale independent renormalization constant for t he local axial vector current is computed using a Ward Identity. The renormalization constants for the scalar, pseudoscalar and vector current are calculated in the RI-MOM scheme. Results in the MS-bar scheme are obtained by using perturbative conversion ratios. The analysis uses in total six ensembles with lattice sizes 24^3x64 and 32^3x64.
73 - Yujiang Bi , Hao Cai , Ying Chen 2017
Renormalization constants (RCs) of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations are calculated by using the RI/MOM and RI/SMOM schemes. The scale independent RC for the axial vector current is computed by using a Ward identity. Then the RCs for the quark field and the vector, tensor, scalar and pseudoscalar operators are calculated in both the RI/MOM and RI/SMOM schemes. The RCs are converted to the $overline{rm MS}$ scheme and we compare the numerical results from using the two intermediate schemes. The lattice size is $48^3times96$ and the inverse spacing $1/a = 1.730(4) {rm~GeV}$.
80 - A. Li , A. Alexandru , Y. Chen 2010
The overlap fermion propagator is calculated on 2+1 flavor domain wall fermion gauge configurations on 16^3 x 32, 24^3 x 64 and 32^3 x 64 lattices. With HYP smearing and low eigenmode deflation, it is shown that the inversion of the overlap operator can be expedited by ~ 20 times for the 16^3 x 32 lattice and ~ 80 times for the 32^3 x 64 lattice. Through the study of hyperfine splitting, we found that the O(m^2a^2) error is small and these dynamical fermion lattices can adequately accommodate quark mass up to the charm quark. The low energy constant Delta_{mix} which characterizes the discretization error of the pion made up of a pair of sea and valence quarks in this mixed action approach is calculated via the scalar correlator with periodic and anti-periodic boundary conditions. It is found to be small which shifts a 300 MeV pion mass by ~ 10 to 19 MeV on these sets of lattices. We have studied the signal-to-noise issue of the noise source for the meson and baryon. It is found that the many-to-all meson and baryon correlators with Z_3 grid source and low eigenmode substitution is efficient in reducing errors for the correlators of both mesons and baryons. With 64-point Z_3 grid source and low-mode substitution, it can reduce the statistical errors of the light quark (m_{pi} ~ 200 - 300 MeV) meson and nucleon correlators by a factor of ~ 3-4 as compared to the point source. The Z_3 grid source itself can reduce the errors of the charmonium correlators by a factor of ~ 3.
257 - N. Mathur , A. Alexandru , Y. Chen 2010
We report meson spectra obtained by using valence overlap fermion propagators generated on a background of 2+1 flavor domain wall fermion gauge configurations on 16^3 X 32, 24^3 X 64 and 32^3 X 64 lattices. We use many-to-all correlators with Z3 grid source and low eigenmode substitution which is efficient in reducing errors for the hadron correlators. The preliminary results on meson spectrum, a0 correlators, and charmonium hyperfine splitting for three sea quark masses are reported here.
86 - M. Gong , A. Alexandru , Y. Chen 2013
We present a calculation of the strangeness and charmness contents <N|bar{s}s|N> and <N|bar{c}c|N> of the nucleon from dynamical lattice QCD with 2+1 flavors. The calculation is performed with overlap valence quarks on 2+1-flavor domain-wall fermion gauge configurations. The configurations are generated by the RBC collaboration on a 24^3*64 lattice with sea quark mass am_l=0.005, am_s=0.04, and inverse lattice spacing a^{-1}=1.73GeV. Both actions have chiral symmetry which is essential in avoiding contamination due to the operator mixing with other flavors. Nucleon propagator and the quark loops are both computed with stochastic grid sources, while low-mode substitution and low-mode averaging methods are used respectively which substantially improve the signal to noise ratio. We obtain the strangeness matrix element f_{T_{s}} = m_s <N|bar{s}s|N> / M_N = 0.0334(62), and the charmness content f_{T_{c}} = m_c <N|bar{c}c|N> / M_N = 0.094(31) which is resolved from zero by 3sigma precision for the first time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا