ترغب بنشر مسار تعليمي؟ اضغط هنا

Rigidity of the total scalar curvature with divergence-free Bach tensor

140   0   0.0 ( 0 )
 نشر من قبل Seungsu Hwang
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

On a compact $n$-dimensional manifold $M$, it is well known that a critical metric of the total scalar curvature, restricted to the space of metrics with unit volume, is Einstein. It has been conjectured that a critical metric of the total scalar curvature, restricted to the space of metrics with constant scalar curvature of unit volume, will also be Einstein. It was shown that this conjecture is true when $M$ together with a critical metric has harmonic curvature or the metric is Bach flat. In this paper, we tried to prove this conjecture with a divergence-free Bach tensor.



قيم البحث

اقرأ أيضاً

116 - Gabjin Yun , Seungsu Hwang 2018
On a compact $n$-dimensional manifold, it is well known that a critical metric of the total scalar curvature, restricted to the space of metrics with unit volume is Einstein. It has been conjectured that a critical metric of the total scalar curvatur e, restricted to the space of metrics with constant scalar curvature of unit volume, will be Einstein. This conjecture, proposed in 1987 by Besse, has not been resolved except when $M$ has harmonic curvature or the metric is Bach flat. In this paper, we prove some gap properties under divergence-free Bach tensor condition for $ngeq 5$, and a similar condition for $n=4$.
128 - Seungsu Hwang , Gabjin Yun 2018
In this paper, we study vacuum static spaces with the complete divergence of the Bach tensor and Weyl tensor. First, we prove that the vanishing of complete divergence of the Bach tensor and Weyl tensor implies the harmonicity of the metric, and we p resent examples in which these conditions do not imply Bach flatness. As an application, we prove the non-existence of multiple black holes in vacuum static spaces with zero scalar curvature. On the other hand, we prove the Besse conjecture under these conditions, which are weaker than harmonicity or Bach flatness. Moreover, we show a rigidity result for vacuum static spaces and find a sufficient condition for the metric to be Bach-flat.
In the first part of this paper, we prove the extensibility of an arbitrary boundary metric to a positive scalar curvature (PSC) metric inside for a compact manifold with boundary, which completely solves an open problem due to Gromov (see Question r ef{extension1}). Then we introduce a fill-in invariant (see Definition ref{fillininvariant}) and discuss its relationship with the positive mass theorems for asymptotically flat (AF) and asymptotically hyperbolic (AH) manifolds. Moreover, we prove that the positive mass theorem for AH manifolds implies that for AF manifolds. In the end, we give some estimates for the fill-in invariant, which provide some partially affirmative answers to Gromovs conjectures formulated in cite{Gro19} (see Conjecture ref{conj0} and Conjecture ref{conj1} below)
158 - Thomas G. Brooks 2019
The conullity of a curvature tensor is the codimension of its kernel. We consider the cases of conullity two in any dimension and conullity three in dimension four. We show that these conditions are compatible with non-negative sectional curvature on ly if either the manifold is diffeomorphic to $mathbb{R}^n$ or the universal cover is an isometric product with a Euclidean factor. Moreover, we show that finite volume manifolds with conullity 3 are locally products.
Motivated by the work of Li and Mantoulidis, we study singular metrics which are uniformly Euclidean $(L^infty)$ on a compact manifold $M^n$ ($nge 3$) with negative Yamabe invariant $sigma(M)$. It is well-known that if $g$ is a smooth metric on $M$ w ith unit volume and with scalar curvature $R(g)ge sigma(M)$, then $g$ is Einstein. We show, in all dimensions, the same is true for metrics with edge singularities with cone angles $leq 2pi$ along codimension-2 submanifolds. We also show in three dimension, if the Yamabe invariant of connected sum of two copies of $M$ attains its minimum, then the same is true for $L^infty$ metrics with isolated point singularities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا