ﻻ يوجد ملخص باللغة العربية
On a compact $n$-dimensional manifold $M$, it is well known that a critical metric of the total scalar curvature, restricted to the space of metrics with unit volume, is Einstein. It has been conjectured that a critical metric of the total scalar curvature, restricted to the space of metrics with constant scalar curvature of unit volume, will also be Einstein. It was shown that this conjecture is true when $M$ together with a critical metric has harmonic curvature or the metric is Bach flat. In this paper, we tried to prove this conjecture with a divergence-free Bach tensor.
On a compact $n$-dimensional manifold, it is well known that a critical metric of the total scalar curvature, restricted to the space of metrics with unit volume is Einstein. It has been conjectured that a critical metric of the total scalar curvatur
In this paper, we study vacuum static spaces with the complete divergence of the Bach tensor and Weyl tensor. First, we prove that the vanishing of complete divergence of the Bach tensor and Weyl tensor implies the harmonicity of the metric, and we p
In the first part of this paper, we prove the extensibility of an arbitrary boundary metric to a positive scalar curvature (PSC) metric inside for a compact manifold with boundary, which completely solves an open problem due to Gromov (see Question r
The conullity of a curvature tensor is the codimension of its kernel. We consider the cases of conullity two in any dimension and conullity three in dimension four. We show that these conditions are compatible with non-negative sectional curvature on
Motivated by the work of Li and Mantoulidis, we study singular metrics which are uniformly Euclidean $(L^infty)$ on a compact manifold $M^n$ ($nge 3$) with negative Yamabe invariant $sigma(M)$. It is well-known that if $g$ is a smooth metric on $M$ w