ﻻ يوجد ملخص باللغة العربية
In the first part of this paper, we prove the extensibility of an arbitrary boundary metric to a positive scalar curvature (PSC) metric inside for a compact manifold with boundary, which completely solves an open problem due to Gromov (see Question ref{extension1}). Then we introduce a fill-in invariant (see Definition ref{fillininvariant}) and discuss its relationship with the positive mass theorems for asymptotically flat (AF) and asymptotically hyperbolic (AH) manifolds. Moreover, we prove that the positive mass theorem for AH manifolds implies that for AF manifolds. In the end, we give some estimates for the fill-in invariant, which provide some partially affirmative answers to Gromovs conjectures formulated in cite{Gro19} (see Conjecture ref{conj0} and Conjecture ref{conj1} below)
In the first part of this paper, we consider the problem of fill-in of nonnegative scalar curvature (NNSC) metrics for a triple of Bartnik data $(Sigma,gamma,H)$. We prove that given a metric $gamma$ on $mathbf{S}^{n-1}$ ($3leq nleq 7$), $(mathbf{S}^
We first present a warped product manifold with boundary to show the non-uniqueness of the positive constant scalar curvature and positive constant boundary mean curvature equation. Next, we construct a smooth counterexample to show that the compactn
We study harmonic maps from a 3-manifold with boundary to $mathbb{S}^1$ and prove a special case of dihedral rigidity of three dimensional cubes whose dihedral angles are $pi / 2$. Furthermore we give some applications to mapping torus hyperbolic 3-manifolds.
We study the problem of deforming a Riemannian metric to a conformal one with nonzero constant scalar curvature and nonzero constant boundary mean curvature on a compact manifold of dimension $ngeq 3$. We prove the existence of such conformal metrics
The Han-Li conjecture states that: Let $(M,g_0)$ be an $n$-dimensional $(ngeq 3)$ smooth compact Riemannian manifold with boundary having positive (generalized) Yamabe constant and $c$ be any real number, then there exists a conformal metric of $g_0$