ترغب بنشر مسار تعليمي؟ اضغط هنا

Singular metrics with negative scalar curvature

116   0   0.0 ( 0 )
 نشر من قبل Luen-Fai Tam
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the work of Li and Mantoulidis, we study singular metrics which are uniformly Euclidean $(L^infty)$ on a compact manifold $M^n$ ($nge 3$) with negative Yamabe invariant $sigma(M)$. It is well-known that if $g$ is a smooth metric on $M$ with unit volume and with scalar curvature $R(g)ge sigma(M)$, then $g$ is Einstein. We show, in all dimensions, the same is true for metrics with edge singularities with cone angles $leq 2pi$ along codimension-2 submanifolds. We also show in three dimension, if the Yamabe invariant of connected sum of two copies of $M$ attains its minimum, then the same is true for $L^infty$ metrics with isolated point singularities.



قيم البحث

اقرأ أيضاً

89 - Giovanni Catino 2021
Extending Aubins construction of metrics with constant negative scalar curvature, we prove that every $n$-dimensional closed manifold admits a Riemannian metric with constant negative scalar-Weyl curvature, that is $R+t|W|, tinmathbb{R}$. In particul ar, there are no topological obstructions for metrics with $varepsilon$-pinched Weyl curvature and negative scalar curvature.
195 - Weiyong He , Jun Li 2018
The scalar curvature equation for rotation invariant Kahler metrics on $mathbb{C}^n backslash {0}$ is reduced to a system of ODEs of order 2. By solving the ODEs, we obtain complete lists of rotation invariant zero or positive csck on $mathbb{C}^n ba ckslash {0}$ in lower dimensions. We also prove that there does not exist negative csck on $mathbb{C}^n backslash {0}$ for $n=2,3$.
295 - D. Kotschick 2012
We classify manifolds of small dimension that admit both, a Riemannian metric of non-negative scalar curvature, and a -- a priori different -- metric for which all wedge products of harmonic forms are harmonic. For manifolds whose first Betti numbers are sufficiently large, this classification extends to higher dimensions.
159 - Guojun Yang 2013
In this paper, we consider a special class of singular Finsler metrics: $m$-Kropina metrics which are defined by a Riemannian metric and a $1$-form. We show that an $m$-Kropina metric ($m e -1$) of scalar flag curvature must be locally Minkowskian in dimension $nge 3$. We characterize by some PDEs a Kropina metric ($m=-1$) which is respectively of scalar flag curvature and locally projectively flat in dimension $nge 3$, and obtain some principles and approaches of constructing non-trivial examples of Kropina metrics of scalar flag curvature.
In the first part of this paper, we consider the problem of fill-in of nonnegative scalar curvature (NNSC) metrics for a triple of Bartnik data $(Sigma,gamma,H)$. We prove that given a metric $gamma$ on $mathbf{S}^{n-1}$ ($3leq nleq 7$), $(mathbf{S}^ {n-1},gamma,H)$ admits no fill-in of NNSC metrics provided the prescribed mean curvature $H$ is large enough (Theorem ref{Thm: no fillin nonnegative scalar 2}). Moreover, we prove that if $gamma$ is a positive scalar curvature (PSC) metric isotopic to the standard metric on $mathbf{S}^{n-1}$, then the much weaker condition that the total mean curvature $int_{mathbf S^{n-1}}H,mathrm dmu_gamma$ is large enough rules out NNSC fill-ins, giving an partially affirmative answer to a conjecture by Gromov (see P.,23 in cite{Gromov4}). In the second part of this paper, we investigate the $theta$-invariant of Bartnik data and obtain some sufficient conditions for the existence of PSC fill-ins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا