ﻻ يوجد ملخص باللغة العربية
The target-mass number dependence of nucleon-nucleon pairs with short-range correlations is explored in a physically transparent geometrical model within a zero-range approximation. The observed $A$ dependence of 2-nucleon ejection cross sections in $(e,e)$ reactions is found to reflect the mass dependence of nuclear density distributions. A parametrization of this $A$ dependence is given. The $A$ dependence of proton-proton vs. proton-neutron pairs relative to $^{12}$C is also analyzed in this model. It can be understood using simple combinatorics without any additional isospin dependence.
Pair densities and associated correlation functions provide a critical tool for introducing many-body correlations into a wide-range of effective theories. Ab initio calculations show that two-nucleon pair-densities exhibit strong spin and isospin de
The nucleon momentum distribution $n_A(k)$ for $A=$2, 3, 4, 16, and 40 nuclei is systematically analyzed in terms of wave functions resulting from advanced solutions of the nonrelativistic Schr{o}dinger equation, obtained within different many-body a
A linear correlation is found between the magnitude of nucleon-nucleon short-range correlations and the nuclear binding energy per nucleon with pairing energy removed. By using this relation, the strengths of nucleon-nucleon short-range correlations
In the present paper, we explore the idea of isospin conservation in new situations and contexts based on the directions provided by our earlier works. We present the results of our calculations for the relative yields of neutron-rich fission fragmen
The isospin dependence of the nucleon effective mass is investigated in the framework of the Dirac Brueckner-Hartree-Fock (DBHF) approach. The definition of nucleon scalar and vector effective masses in the relativistic approach is clarified. Only th