ﻻ يوجد ملخص باللغة العربية
In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been carried out in linear approximation, where the plasma perturbation can be assumed small and plasma equations of motion linearized. This approximation breaks down in the blowout regime where a high-density electron driver expels plasma electrons from its path and creates a cavity void of electrons in its wake. In this paper, we develop a technique that allows to calculate short-range longitudinal and transverse wakes generated by a witness bunch being accelerated inside the cavity. Our results can be used for studies of the beam loading and the hosing instability of the witness bunch in PWFA and LWFA.
Three dimensional particle in cell simulations are used for studying proton driven plasma wake-field acceleration that uses a high-energy proton bunch to drive a plasma wake-field for electron beam acceleration. A new parameter regime was found which
High energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. In order to increase the energy or reduce the size of the accelerator, new acceleration sc
We propose a Plasma Accelerator Research Station (PARS) based at proposed FEL test facility CLARA (Compact Linear Accelerator for Research and Applications) at Daresbury Laboratory. The idea is to use the relativistic electron beam from CLARA, to inv
Three-dimensional Particle-in-Cell (PIC) simulations with the code QuickPIC are used to illustrate the typical accelerating structures associated with the interaction of an intense laser beam with an underdense plasma in the blowout regime. Our simul
A new regime of proton-driven plasma wakefield acceleration is discovered, in which the plasma nonlinearity increases the phase velocity of the excited wave compared to that of the protons. If the beam charge is much larger than minimally necessary t