ترغب بنشر مسار تعليمي؟ اضغط هنا

A plasma wakefield acceleration experiment using CLARA beam

200   0   0.0 ( 0 )
 نشر من قبل Oznur Mete Oznur Mete
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a Plasma Accelerator Research Station (PARS) based at proposed FEL test facility CLARA (Compact Linear Accelerator for Research and Applications) at Daresbury Laboratory. The idea is to use the relativistic electron beam from CLARA, to investigate some key issues in electron beam transport and in electron beam driven plasma wakefield acceleration, e.g. high gradient plasma wakefield excitation driven by a relativistic electron bunch, two bunch experiment for CLARA beam energy doubling, high transformer ratio, long bunch self-modulation and some other advanced beam dynamics issues. This paper presents the feasibility studies of electron beam transport to meet the requirements for beam driven wakefield acceleration and presents the plasma wakefield simulation results based on CLARA beam parameters. Other possible experiments which can be conducted at the PARS beam line are also discussed.



قيم البحث

اقرأ أيضاً

The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the worlds first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected to sample the wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.
140 - S.-Y. Kim , K. Moon , M. Chung 2021
An active plasma lens focuses the beam in both the horizontal and vertical planes simultaneously using a magnetic field generated by a discharge current through the plasma. A beam size of 5--10 $mu$m can be achieved using an focusing gradient on the order of 100 T/m. The active plasma lens is therefore an attractive element for plasma wakefield acceleration, because an ultra-small size of the witness electron beam is required for injection into the plasma wakefield to minimize emittance growth and to enhance the capturing efficiency. When the driving beam and witness electron beam co-propagate through the active plasma lens, interactions between the driving and witness beams and the plasma must be considered. In this paper, through particle-in-cell simulations, we discuss the possibility of using an active plasma lens for the final focusing of the electron beam in the presence of driving proton bunches. The beam parameters for AWAKE Run 2 are taken as an example for this type of application. It is confirmed that the amplitude of the plasma wakefield excited by proton bunches remains the same even after propagation through the active plasma lens. The emittance of the witness electron beam increases rapidly in the plasma density ramp regions of the lens. Nevertheless, when the witness electron beam has a charge of 100 pC, emittance of 10 mm mrad, and bunch length of 60 $mu$m, its emittance growth is not significant along the active plasma lens. For small emittance, such as 2 mm mrad, the emittance growth is found to be strongly dependent on the plasma density.
Next-generation plasma-based accelerators can push electron bunches to gigaelectronvolt energies within centimetre distances. The plasma, excited by a driver pulse, generates large electric fields that can efficiently accelerate a trailing witness bu nch making possible the realization of laboratory-scale applications ranging from high-energy colliders to ultra-bright light sources. So far several experiments have demonstrated a significant acceleration but the resulting beam quality, especially the energy spread, is still far from state of the art conventional accelerators. Here we show the results of a beam-driven plasma acceleration experiment where we used an electron bunch as a driver followed by an ultra-short witness. The experiment demonstrates, for the first time, an innovative method to achieve an ultra-low energy spread of the accelerated witness of about 0.1%. This is an order of magnitude smaller than what has been obtained so far. The result can lead to a major breakthrough toward the optimization of the plasma acceleration process and its implementation in forthcoming compact machines for user-oriented applications.
High energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. In order to increase the energy or reduce the size of the accelerator, new acceleration sc hemes need to be developed. Plasma wakefield acceleration, in which the electrons in a plasma are excited, leading to strong electric fields, is one such promising novel acceleration technique. Pioneering experiments have shown that an intense laser pulse or electron bunch traversing a plasma, drives electric fields of 10s GV/m and above. These values are well beyond those achieved in conventional RF accelerators which are limited to ~0.1 GV/m. A limitation of laser pulses and electron bunches is their low stored energy, which motivates the use of multiple stages to reach very high energies. The use of proton bunches is compelling, as they have the potential to drive wakefields and accelerate electrons to high energy in a single accelerating stage. The long proton bunches currently available can be used, as they undergo self-modulation, a particle-plasma interaction which longitudinally splits the bunch into a series of high density microbunches, which then act resonantly to create large wakefields. The AWAKE experiment at CERN uses intense bunches of protons, each of energy 400 GeV, with a total bunch energy of 19 kJ, to drive a wakefield in a 10 m long plasma. Bunches of electrons are injected into the wakefield formed by the proton microbunches. This paper presents measurements of electrons accelerated up to 2 GeV at AWAKE. This constitutes the first demonstration of proton-driven plasma wakefield acceleration. The potential for this scheme to produce very high energy electron bunches in a single accelerating stage means that the results shown here are a significant step towards the development of future high energy particle accelerators.
85 - K. Lotov , P. Tuev 2021
A new regime of proton-driven plasma wakefield acceleration is discovered, in which the plasma nonlinearity increases the phase velocity of the excited wave compared to that of the protons. If the beam charge is much larger than minimally necessary t o excite a nonlinear wave, there is sufficient freedom in choosing the longitudinal plasma density profile to make the wave speed close to the speed of light. This allows electrons or positrons to be accelerated to about 200 GeV with a 400 GeV proton driver.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا