ﻻ يوجد ملخص باللغة العربية
Three dimensional particle in cell simulations are used for studying proton driven plasma wake-field acceleration that uses a high-energy proton bunch to drive a plasma wake-field for electron beam acceleration. A new parameter regime was found which generates essentially constant electric field that is three orders magnitudes larger than that of AWAKE design, i.e. of the order of $2 times 10^{3}$ GV/m. This is achieved in the the extreme blowout regime, when number density of the driving proton bunch exceeds plasma electron number density 100 times.
Plasma accelerators can sustain very high acceleration gradients. They are promising candidates for future generations of particle accelerators for several scientific, medical and technological applications. Current plasma based acceleration experime
Using 2d3v code LCODE, the numerical simulation of nonlinear wakefield excitation in plasma by shaped relativistic electron bunch with charge distribution, which increases according to Gaussian charge distribution up to the maximum value, and then de
We explore a regime of laser-driven plasma acceleration of electrons where the radial envelope of the laser-pulse incident at the plasma entrance is strongly mismatched to the nonlinear plasma electron response excited by it. This regime has been exp
In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been carried out in linear approximation, where the plasma perturbation can be assumed small and plasma equations of motion linearized. This approximati
We study electron acceleration in a plasma wakefield under the influence of the radiation-reaction force caused by the transverse betatron oscillations of the electron in the wakefield. Both the classical and the strong quantum-electrodynamic (QED) l