ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomic-layer doping of SiGe heterostructures for atomic-precision donor devices

63   0   0.0 ( 0 )
 نشر من قبل Ezra Bussmann
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As a first step to porting scanning tunneling microscopy methods of atomic-precision fabrication to a strained-Si/SiGe platform, we demonstrate post-growth P atomic-layer doping of SiGe heterostructures. To preserve the substrate structure and elastic state, we use a T $leq 800^circ$C process to prepare clean Si$_{0.86}$Ge$_{0.14}$ surfaces suitable for atomic-precision fabrication. P-saturated atomic-layer doping is incorporated and capped with epitaxial Si under a thermal budget compatible with atomic-precision fabrication. Hall measurements at T$=0.3$ K show that the doped heterostructure has R$_{square}=570pm30$ $Omega$, yielding an electron density $n_{e}=2.1pm0.1times10^{14}$cm$^{-2}$ and mobility $mu_e=52pm3$ cm$^{2}$ V$^{-1}$ s$^{-1}$, similar to saturated atomic-layer doping in pure Si and Ge. The magnitude of $mu_e$ and the complete absence of Shubnikov-de Haas oscillations in magnetotransport measurements indicate that electrons are overwhelmingly localized in the donor layer, and not within a nearby buried Si well. This conclusion is supported by self-consistent Schrodinger-Poisson calculations that predict electron occupation primarily in the donor layer.

قيم البحث

اقرأ أيضاً

We show that a scanning capacitance microscope (SCM) can image buried delta-doped donor nanostructures fabricated in Si via a recently developed atomic-precision scanning tunneling microscopy (STM) lithography technique. A critical challenge in compl eting atomic-precision nanoelectronic devices is to accurately align mesoscopic metal contacts to the STM defined nanostructures. Utilizing the SCMs ability to image buried dopant nanostructures, we have developed a technique by which we are able to position metal electrodes on the surface to form contacts to underlying STM fabricated donor nanostructures with a measured accuracy of 300 nm. Low temperature (T=4K) transport measurements confirm successful placement of the contacts to the donor nanostructures.
We realize Mn $delta$-doping into Si and Si/Ge interfaces using Mn atomic chains on Si(001). Highly sensitive X-ray absorption fine structure techniques reveal that encapsulation at room temperature prevents the formation of silicides / germanides wh ilst maintaining one dimensional anisotropic structures. This is revealed by studying both the incident X-ray polarization dependence and post-annealing effects. Density functional theory calculations suggest that Mn atoms are located at substitutional sites, and show good agreement with experiment. A comprehensive magnetotransport study reveals magnetic ordering within the Mn $delta$-doped layer, which is present at around 120,K. We demonstrate that doping methods based on the burial of surface nanostructures allows for the realization of systems for which conventional doping methods fail.
Advances in synthesis techniques and materials understanding have given rise to oxide heterostructures with intriguing physical phenomena that cannot be found in their constituents. In these structures, precise control of interface quality, including oxygen stoichiometry, is critical for unambiguous tailoring of the interfacial properties, with deposition of the first monolayer being the most important step in shaping a well-defined functional interface. Here, we studied interface formation and strain evolution during the initial growth of LaAlO3 on SrTiO3 by pulsed laser deposition, in search of a means for controlling the atomic-sharpness of the interfaces. Our experimental results show that growth of LaAlO3 at a high oxygen pressure dramatically enhances interface abruptness. As a consequence, the critical thickness for strain relaxation was increased, facilitating coherent epitaxy of perovskite oxides. This provides a clear understanding of the role of oxygen pressure during the interface formation, and enables the synthesis of oxide heterostructures with chemically-sharper interfaces.
Two-dimensional (2d) nano-electronics, plasmonics, and emergent phases require clean and local charge control, calling for layered, crystalline acceptors or donors. Our Raman, photovoltage, and electrical conductance measurements combined with textit {ab initio} calculations establish the large work function and narrow bands of $alpha$-RuCl$_3$ enable modulation doping of exfoliated, chemical vapor deposition (CVD), and molecular beam epitaxy (MBE) materials. Short-ranged lateral doping (${leq}65 text{nm}$) and high homogeneity are achieved in proximate materials with a single layer of arucl. This leads to the highest monolayer graphene (mlg) mobilities ($4,900 text{cm}^2/ text{Vs}$) at these high hole densities ($3times10^{13} text{cm}^{-2}$); and yields larger charge transfer to bilayer graphene (blg) ($6times10^{13} text{cm}^{-2}$). We further demonstrate proof of principle optical sensing, control via twist angle, and charge transfer through hexagonal boron nitride (hBN).
Atomic layer deposition was used to synthesize niobium silicide (NbSi) films with a 1:1 stoichiometry, using NbF5 and Si2H6 as precursors. The growth mechanism at 200oC was examined by in-situ quartz crystal microbalance (QCM) and quadrupole mass spe ctrometer (QMS). This study revealed a self-limiting reaction with a growth rate of 4.5 {AA}/cycle. NbSi was found to grow only on oxide-free films prepared using halogenated precursors. The electronic properties, growth rate, chemical composition, and structure of the films were studied over the deposition temperature range 150-400oC. For all temperatures, the films are found to be stoichiometric NbSi (1:1) with no detectable fluorine impurities, amorphous with a density of 6.65g/cm3, and metallic with a resistivity {rho}=150 {mu}{Omega}.cm at 300K for films thicker than 35 nm. The growth rate was nearly constant for deposition temperatures between 150-275oC, but increases above 300oC suggesting the onset of non-self limiting growth. The electronic properties of the films were measured down to 1.2K and revealed a superconducting transition at Tc=3.1K. To our knowledge, a superconducting niobium silicide film with a 1:1 stoichiometry has never been grown before by any technique.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا