ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomic layer deposition and superconducting properties of NbSi films

113   0   0.0 ( 0 )
 نشر من قبل Thomas Proslier
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomic layer deposition was used to synthesize niobium silicide (NbSi) films with a 1:1 stoichiometry, using NbF5 and Si2H6 as precursors. The growth mechanism at 200oC was examined by in-situ quartz crystal microbalance (QCM) and quadrupole mass spectrometer (QMS). This study revealed a self-limiting reaction with a growth rate of 4.5 {AA}/cycle. NbSi was found to grow only on oxide-free films prepared using halogenated precursors. The electronic properties, growth rate, chemical composition, and structure of the films were studied over the deposition temperature range 150-400oC. For all temperatures, the films are found to be stoichiometric NbSi (1:1) with no detectable fluorine impurities, amorphous with a density of 6.65g/cm3, and metallic with a resistivity {rho}=150 {mu}{Omega}.cm at 300K for films thicker than 35 nm. The growth rate was nearly constant for deposition temperatures between 150-275oC, but increases above 300oC suggesting the onset of non-self limiting growth. The electronic properties of the films were measured down to 1.2K and revealed a superconducting transition at Tc=3.1K. To our knowledge, a superconducting niobium silicide film with a 1:1 stoichiometry has never been grown before by any technique.


قيم البحث

اقرأ أيضاً

Despite many efforts the origin of a ferromagnetic (FM) response in ZnMnO and ZnCoO is still not clear. Magnetic investigations of our samples, not discussed here, show that the room temperature FM response is observed only in alloys with a non-unifo rm Mn or Co distribution. Thus, the control of their distribution is crucial for explanation of contradicted magnetic properties of ZnCoO and ZnMnO reported till now. In the present review we discuss advantages of the Atomic Layer Deposition (ALD) growth method, which enables us to control uniformity of ZnMnO and ZnCoO alloys. Properties of ZnO, ZnMnO and ZnCoO films grown by the ALD are discussed.
In the present study we report on properties of ZnCoO films grown at relatively low temperature by the Atomic Layer Deposition, using two reactive organic zinc precursors (dimethylzinc and diethylzinc). The use of these precursors allowed us the sign ificant reduction of a growth temperature to below 300oC. The influence of growth conditions on the Co distribution in ZnCoO films, their structure and magnetic properties was investigated using Secondary Ion Mass Spectroscopy, Scanning Electron Microscopy, Cathodoluminescence, Energy Dispersive X-ray Spectrometry (EDX), X-ray diffraction and Superconducting Quantum Interference Device magnetometry. We achieved high uniformity of the films grown at 160{deg}C. Such films are paramagnetic. Films grown at 200{deg} and at higher temperature are nonuniform. Formation of foreign phases in such films was detected using high resolution EDX method. These samples are not purely paramagnetic and show weak ferromagnetic response at low temperature.
We have grown superconducting TiN films by atomic layer deposition with thicknesses ranging from 6 to 89 nm. This deposition method allows us to tune the resistivity and critical temperature by controlling the film thickness. The microwave properties are measured, using a coplanar-waveguide resonator, and we find internal quality factors above a million, high sheet inductances (5.2-620 pH), and pulse response times up to 100 mu s. The high normal state resistivity of the films (> 100 muOmega cm) affects the superconducting state and thereby the electrodynamic response. The microwave response is modeled using a quasiparticle density of states modified with an effective pair-breaker,consistently describing the measured temperature dependence of the quality factor and the resonant frequency.
A wide variety of new phenomena such as novel magnetization configurations have been predicted to occur in three dimensional magnetic nanostructures. However, the fabrication of such structures is often challenging due to the specific shapes required , such as magnetic tubes and spirals. Furthermore, the materials currently used to assemble these structures are predominantly magnetic metals that do not allow to study the magnetic response of the system separately from the electronic one. In the field of spintronics, the prototypical material used for such experiments is the ferrimagnetic insulator yttrium iron garnet (Y$_3$Fe$_5$O$_{12}$, YIG). YIG is one of the best materials especially for magnonic studies due to its low Gilbert damping. Here, we report the first successful fabrication of YIG thin films via atomic layer deposition. To that end we utilize a supercycle approach based on the combination of sub-nanometer thin layers of the binary systems Fe$_2$O$_3$ and Y$_2$O$_3$ in the correct atomic ratio on Y$_3$Al$_5$O$_{12}$ substrates with a subsequent annealing step. Our process is robust against typical growth-related deviations, ensuring a good reproducibility. The ALD-YIG thin films exhibit a good crystalline quality as well as magnetic properties comparable to other deposition techniques. One of the outstanding characteristics of atomic layer deposition is its ability to conformally coat arbitrarily-shaped substrates. ALD hence is the ideal deposition technique to grant an extensive freedom in choosing the shape of the magnetic system. The atomic layer deposition of YIG enables the fabrication of novel three dimensional magnetic nanostructures, which in turn can be utilized for experimentally investigating the phenomena predicted in those structures.
We report on the structural, electrical and magnetic properties of ZnCoO thin films grown by Atomic Layer Deposition (ALD) method using reactive organic precursors of zinc and cobalt. As a zinc precursor we applied either dimethylzinc or diethylzinc and cobalt (II) acetyloacetonate as a cobalt precursor. The use of these precursors allowed us the significant reduction of a growth temperature to 300oC and below, which proved to be very important for the growth of uniform films of ZnCoO. Structural, electrical and magnetic properties of the obtained ZnCoO layers will be discussed based on the results of SIMS, SEM, EDS, XRD, AFM, Hall effect and SQUID investigations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا