ﻻ يوجد ملخص باللغة العربية
Rare earth elements recycling has been proposed to alleviate supply risks and market volatility. In this context, the potential of a new recycling pathway, namely plasma mass separation, is uncovered through the example of nedodymium - iron - boron magnets recycling. Plasma mass separation is shown to address some of the shortcomings of existing rare earth elements recycling pathways, in particular detrimental environmental effects. A simplified mass separation model suggests that plasma separation performances could compare favourably with existing recycling options. In addition, simple energetic considerations of plasma processing suggest that the cost of these techniques may not be prohibitive, particularly considering that energy costs from solar may become significantly cheaper. Further investigation and experimental demonstration of plasma separation techniques should permit asserting the potential of these techniques against other recycling techniques currently under development.
Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma
High-throughput plasma separation based on atomic mass holds the promise for offering unique solutions to a variety of high-impact societal applications. Through the mass differential effects they exhibit, crossed-field configurations can in principl
Fluoride-doped iron-based oxypnictides containing rare-earth gadolinium (GdFeAsO0.8F0.2) and co-doping with yttrium (Gd0.8Y0.2FeAsO0.8F0.2) have been prepared via conventional solid state reaction at ambient pressure. The non-yttrium substituted oxyp
Charges in cold, multiple-species, non-neutral plasmas separate radially by mass, forming centrifugally-separated states. Here, we report the first detailed measurements of such states in an electron-antiproton plasma, and the first observations of t
Recently, two novel techniques for the extraction of the phase-shift map (Tomassini {it et.~al.}, Applied Optics {bf 40} 35 (2001)) and the electronic density map estimation (Tomassini P. and Giulietti A., Optics Communication {bf 199}, pp 143-148 (2